REU Sites: Collaborative Research: Advances of Machine Learning in Theory & Applications (AMALTHEA)

REU 网站:协作研究:机器学习的理论进展

基本信息

  • 批准号:
    0647018
  • 负责人:
  • 金额:
    $ 16.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-03-01 至 2014-02-28
  • 项目状态:
    已结题

项目摘要

Title: REU Site: Collaborative Research: Advances of Machine Learning in Theory and Applications (AMALTHEA)PI: Georgios C Anagnostopoulos Institution: Florida Institute of TechnologyPI: Michael GeorgiopoulosInstitution: University of Central FloridaAMALTHEA is a collaborative effort between two closely-located universities, Florida Institute of Technology in Melbourne and University of Central Florida in Orlando, Florida. The project seeks to provide top quality educational experiences to a diverse community of learners through research participation in the area of Machine Learning (ML). Machine Learning is nowadays a high-importance, ever- expanding discipline that draws concepts from a variety of fields, including artificial intelligence, cognitive sciences, information theory, statistics, mathematics, physics, philosophy and biology among others. On the other hand, automatic target recognition, earthquake prediction, gene expression discovery, intelligent credit fraud protection and affectionate computing, to mention just a few, are examples of cutting-edge applications of ML in various technological and scientific domains. The project's thrust area is the theory of ML and how it can be integrated and applied to important real-life problems, thus exposing participants to both theory and applications.AMALTHEA involves ten undergraduate students annually in ML research over ten weeks in the summer. Overall, the project will impact a diverse group of 30 students, as well as 12 graduate students, which will participate in undergraduate teaching and mentoring activities. The undergraduate students perform supervised research on ML topics that have the potential to impact the field of ML itself, as well as how ML is applied to other scientific disciplines. REU research results are expected to be published in interdisciplinary conferences, and, potentially, technical journals. Additionally, these REU research advances are fed back and integrated into the teaching of ML-related courses at the partnering institutions.The project involves four faculty who have significant overall experience in ML research and education; they have mentored over 50 undergraduates in research and co-authored over 20 conference and journal papers with them. The project is also supported in its endeavors by an actively participating Advisory Board consisting of industry and government professionals with interest and expertise in ML.URL: http://my.fit.edu/amalthea
标题:REU网站:合作研究:机器学习理论与应用的进展(AMALTHEA)PI: Georgios C Anagnostopoulos机构:佛罗里达理工学院i: Michael georgiopoulos机构:佛罗里达中央大学AMALTHEA是两所位于墨尔本的佛罗里达理工学院和佛罗里达州奥兰多的佛罗里达中央大学之间的合作努力。该项目旨在通过参与机器学习(ML)领域的研究,为多样化的学习者社区提供高质量的教育体验。如今,机器学习是一门非常重要的、不断扩展的学科,它从各个领域汲取概念,包括人工智能、认知科学、信息论、统计学、数学、物理学、哲学和生物学等。另一方面,自动目标识别,地震预测,基因表达发现,智能信用欺诈保护和深情计算,仅举几例,是ML在各个技术和科学领域的前沿应用的例子。该项目的重点领域是机器学习理论,以及如何将其集成并应用于重要的现实问题,从而使参与者同时接触到理论和应用。AMALTHEA每年让10名本科生在夏季进行为期10周的机器学习研究。总体而言,该项目将影响到30名学生和12名研究生,他们将参与本科教学和指导活动。本科生对机器学习主题进行监督研究,这些主题有可能影响机器学习本身的领域,以及机器学习如何应用于其他科学学科。REU的研究成果预计将在跨学科会议上发表,并可能在技术期刊上发表。此外,这些REU的研究进展被反馈并整合到合作机构的ml相关课程的教学中。该项目涉及四名在机器学习研究和教育方面具有丰富经验的教师;他们指导了50多名本科生进行研究,并与他们共同撰写了20多篇会议和期刊论文。该项目还得到了一个积极参与的咨询委员会的支持,该委员会由对ML.URL: http://my.fit.edu/amalthea感兴趣和专业知识的行业和政府专业人士组成

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Georgios Anagnostopoulos其他文献

Pipelining of Fuzzy ARTMAP without matchtracking: Correctness, performance bound, and Beowulf evaluation
  • DOI:
    10.1016/j.neunet.2006.10.003
  • 发表时间:
    2007-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    José Castro;Jimmy Secretan;Michael Georgiopoulos;Ronald DeMara;Georgios Anagnostopoulos;Avelino Gonzalez
  • 通讯作者:
    Avelino Gonzalez
GFAM: Evolving Fuzzy ARTMAP neural networks
  • DOI:
    10.1016/j.neunet.2007.05.006
  • 发表时间:
    2007-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ahmad Al-Daraiseh;Assem Kaylani;Michael Georgiopoulos;Mansooreh Mollaghasemi;Annie S. Wu;Georgios Anagnostopoulos
  • 通讯作者:
    Georgios Anagnostopoulos
Path planning of autonomous UAVs using reinforcement learning
使用强化学习的自主无人机路径规划
  • DOI:
    10.1088/1742-6596/2526/1/012088
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christos Chronis;Georgios Anagnostopoulos;E. Politi;Antonios Garyfallou;Iraklis Varlamis;G. Dimitrakopoulos
  • 通讯作者:
    G. Dimitrakopoulos
3-D Conformal HDR Brachytherapy as Monotherapy for Localized Prostate Cancer
  • DOI:
    10.1007/s00066-004-1215-4
  • 发表时间:
    2004-04-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Thomas Martin;Dimos Baltas;Ralf Kurek;Sandra Röddiger;Marina Kontova;Georgios Anagnostopoulos;Thomas Dannenberg;Thomas Buhleier;Georgies Skazikis;Ulf Tunn;Nikolaos Zamboglou
  • 通讯作者:
    Nikolaos Zamboglou
Parallelization of Fuzzy ARTMAP to improve its convergence speed: The network partitioning approach and the data partitioning approach
  • DOI:
    10.1016/j.na.2005.02.013
  • 发表时间:
    2005-11-30
  • 期刊:
  • 影响因子:
  • 作者:
    José Castro;Michael Georgiopoulos;Jimmy Secretan;Ronald F. DeMara;Georgios Anagnostopoulos;Avelino Gonzalez
  • 通讯作者:
    Avelino Gonzalez

Georgios Anagnostopoulos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Georgios Anagnostopoulos', 18)}}的其他基金

REU Site: Advances of Machine Learning in Theory & Applications (AMALTHEA)
REU 网站:机器学习理论进展
  • 批准号:
    1560345
  • 财政年份:
    2016
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Standard Grant
REU Site: Advances of Machine Learning in Theory and Applications (AMALTHEA)
REU 网站:机器学习理论与应用的进展 (AMALTHEA)
  • 批准号:
    1263011
  • 财政年份:
    2013
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Standard Grant
Collaborative Research: RET in Engineering and Computer Science Site: Research Experiences for Teachers Focused on Applications of ImagEs and SiGnals In High Schools (AEGIS)
合作研究:工程和计算机科学领域的 RET 网站:高中图像和信号应用教师的研究经验 (AEGIS)
  • 批准号:
    1200552
  • 财政年份:
    2012
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Building a Community of Learners/Scholars to Develop, Assess and Disseminate Educational Materials/Teaching Practices in Machine Learning: Expand EMD-MLR
协作研究:建立学习者/学者社区来开发、评估和传播机器学习的教育材料/教学实践:扩展 EMD-MLR
  • 批准号:
    0717674
  • 财政年份:
    2007
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Standard Grant
PROJECT EMD-MLR: Educational Materials Development through the Integration of Machine Learning Research into the Senior Design Projects
项目 EMD-MLR:通过将机器学习研究融入高级设计项目来开发教材
  • 批准号:
    0341601
  • 财政年份:
    2004
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341426
  • 财政年份:
    2024
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341424
  • 财政年份:
    2024
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341425
  • 财政年份:
    2024
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: Identifying and Evaluating Sites for Cosmic Explorer
合作研究:识别和评估宇宙探索者的地点
  • 批准号:
    2308989
  • 财政年份:
    2023
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: Dew impacts on ecosystem carbon, energy and water fluxes at continental scale - a synthesis across NEON sites
合作研究:MRA:露水对大陆尺度生态系统碳、能量和水通量的影响 - 跨 NEON 站点的综合
  • 批准号:
    2307259
  • 财政年份:
    2023
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Identifying and Evaluating Sites for Cosmic Explorer
合作研究:识别和评估宇宙探索者的地点
  • 批准号:
    2308985
  • 财政年份:
    2023
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Identifying and Evaluating Sites for Cosmic Explorer
合作研究:识别和评估宇宙探索者的地点
  • 批准号:
    2308990
  • 财政年份:
    2023
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: Dew impacts on ecosystem carbon, energy and water fluxes at continental scale - a synthesis across NEON sites
合作研究:MRA:露水对大陆尺度生态系统碳、能量和水通量的影响 - 跨 NEON 站点的综合
  • 批准号:
    2307258
  • 财政年份:
    2023
  • 资助金额:
    $ 16.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了