Building colloidal assemblies via site-specific bonding regions
通过特定位点的粘合区域构建胶体组件
基本信息
- 批准号:0651611
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-01 至 2010-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
National Science Foundation - Division of Chemical &Transport Systems Particulate & Multiphase Processes Program (1415)Proposal Number: 0651611Principal Investigators: Velegol, DarrellAffiliation: Pennsylvania State University - University ParkProposal Title: Building colloidal assemblies via site-specific bonding regionsIntellectual MeritColloids and nanocolloids have historically been used for single purposes, such as polymer colloids forming films or TiO2 particles scattering light. In recent years more complex particles have been formed that can perform controlled drug delivery or imaging. Future demands will require even more complex, multi-purpose assemblies. Such assemblies might have a central function like remediation, sensing, or controlled release, but could also be moved magnetically or imaged fluorescently. Various methods exist for assembling complex particles; however, these methods have not provided a general and scalable way to assemble particles of various materials, sizes, and chemical functionalities.In this proposal both chemical and physical approaches are proposed for building complex assemblies by placement of site-specific bonding regions on individual particles. Chemically, the "particle lithography" method enables the site-specific placement of molecules or nanocolloids onto larger colloidal particles (100 nm in size). After a colloidal particle is patterned with the appropriate chemistry, it can be assembled readily to other particles. Physically, localized depletion forces obtained by slightly flattening particles at specified locations enable colloidal particles to be bonded with an easily-tunable bond strength. The vision is that site-specific functionalization will enable fabrication of colloidal devices in many fields of application. For example, drug delivery assemblies might consist of hydrogel particles with fluorescent particles for imaging and antigen-coated particles for targeting; environmental remediation assemblies might consist of polymer colloids for contaminant absorption and magnetic colloids for transport; robotic devices might consist of sensor particles for detection and electrokinetic nanomotors for transport. A key bottleneck to assembling these and other devices is understanding the fundamental chemistry and physics of the assembly processes.The intellectual merit of this work is the development of controlled, site-specific bonding methods for assembling colloidal particles. To use a molecular analogy, we propose to make "colloidal atoms" having "bonding valences" that enable them to self-assemble into "colloidal molecules". The particle lithography method allows local chemical functionalization, while the localized depletion forces allow rotatable and tunable bonding. Developing these methods requires us to advance the knowledge of fundamental colloidal physics, especially in interparticle forces.Broader ImpactThe broader impacts of this work focus on the integration of PhD student research into longer-term interactions with high school students. My PhD students learn both experimental (e.g., electrophoresis, FESEM, synthesis) and modeling (e.g., Brownian dynamics, colloidal forces) techniques, and we have worked with the highly-attended Central Pennsylvania Festival of the Arts to show interesting science to over 1000 K-3 students and their parents. After two years of these short-term interactions, we now hypothesize that year-long interactions with Physics students at Bald Eagle Area High School will have a significant impact on Physics test scores and students entering science and engineering careers. We will test this hypothesis in a collaborative effort. The PhD students also integrate their research with REU training; the past half dozen REU students in my lab have earned their name on published work alongside the PhD students. Our research will be published in journals like Langmuir, Nano Letters, and Advanced Materials, giving it broad exposure.
国家科学基金会-化学运输系统分部颗粒多相过程计划(1415)提案编号:0651611主要研究者:Velegol,Darrell所属机构: Pennsylvania州立大学- University Park提案标题:通过特定位点的键合区域构建胶体组装知识分子MeritColloids和nanocolloids历来用于单一目的,例如聚合物胶体形成膜或TiO 2颗粒散射光。近年来,已经形成了可以执行受控药物递送或成像的更复杂的颗粒。未来的需求将需要更复杂的多用途组件。这样的组件可能具有诸如补救、传感或受控释放的中心功能,但也可以磁性移动或荧光成像。存在各种方法来组装复杂的颗粒,然而,这些方法还没有提供一个通用的和可扩展的方式来组装各种材料,尺寸和化学functionals.In该提案中,提出了化学和物理的方法来构建复杂的组件,通过放置在单个颗粒上的特定位点的键合区域。在化学上,“颗粒光刻”方法能够将分子或纳米胶体定位在更大的胶体颗粒(尺寸为100 nm)上。在用适当的化学物质对胶体颗粒进行图案化之后,它可以容易地组装成其他颗粒。从物理上讲,通过在指定位置稍微压平颗粒而获得的局部耗尽力使胶体颗粒能够以易于调节的结合强度结合。我们的愿景是,位点特异性功能化将使胶体设备的制造在许多应用领域。例如,药物递送组件可能由具有用于成像的荧光颗粒和用于靶向的抗原涂覆颗粒的水凝胶颗粒组成;环境修复组件可能由用于污染物吸收的聚合物胶体和用于运输的磁性胶体组成;机器人设备可能由用于检测的传感器颗粒和用于运输的电动纳米马达组成。组装这些和其他器件的一个关键瓶颈是理解组装过程的基本化学和物理。这项工作的智力价值是开发用于组装胶体颗粒的受控的、特定于位点的键合方法。使用分子类比,我们建议使“胶体原子”具有“键价”,使它们能够自组装成“胶体分子”。粒子光刻法允许局部化学功能化,而局部耗尽力允许可旋转和可调谐的键合。开发这些方法需要我们推进基本胶体物理学的知识,特别是在粒子间的力量。更广泛的影响这项工作的更广泛的影响集中在博士生研究与高中生的长期互动的整合。我的博士生学习实验(例如,电泳,FESEM,合成)和建模(例如,布朗动力学,胶体力)技术,我们已经与高度出席中央宾夕法尼亚艺术节,显示有趣的科学超过1000 K-3学生和他们的父母。经过两年的这些短期互动,我们现在假设,与秃鹰地区高中物理学生长达一年的互动将对物理考试成绩和学生进入科学和工程职业产生重大影响。我们将通过合作来检验这一假设。博士生还将他们的研究与REU培训相结合;我实验室过去的六名REU学生与博士生一起在发表的作品中获得了他们的名字。我们的研究将发表在《朗缪尔》、《纳米快报》和《先进材料》等期刊上,使其得到广泛的曝光。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Darrell Velegol其他文献
Understanding biophysicochemical interactions at the nano–bio interface
理解纳米-生物界面的生物物理化学相互作用
- DOI:
10.1038/nmat2442 - 发表时间:
2009-06-14 - 期刊:
- 影响因子:38.500
- 作者:
Andre E. Nel;Lutz Mädler;Darrell Velegol;Tian Xia;Eric M. V. Hoek;Ponisseril Somasundaran;Fred Klaessig;Vince Castranova;Mike Thompson - 通讯作者:
Mike Thompson
Darrell Velegol的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Darrell Velegol', 18)}}的其他基金
Active matter transport by non-electrolyte diffusiophoresis
非电解质扩散电泳的活性物质转运
- 批准号:
1603716 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
2014 Colloidal, Macromolecular & Polyelectrolyte Solutions Gordon Research Conference and Seminar, February 16-21, 2014, Ventura, CA
2014 胶体、高分子
- 批准号:
1405713 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
IDR: Emergent Assembly & Patterning of Dynamic Catalytic Motor Systems
IDR:紧急装配
- 批准号:
1014673 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
NER: Nanoparticle Stability by Quantum Design of Van der Waals Forces
NER:通过范德华力的量子设计实现纳米粒子稳定性
- 批准号:
0403646 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
NIRT: Bottom Up Assembly of Metal and Semiconductor Nanowires: Fundamental Forces to Nanoelectronic Circuits
NIRT:金属和半导体纳米线的自下而上组装:纳米电子电路的基本力
- 批准号:
0303976 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Measuring the Effect of Nano-Scale Charge Nonuniformity on Colloidal Forces
职业:测量纳米级电荷不均匀性对胶体力的影响
- 批准号:
9984443 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
High Performance Supercapacitors based on Hierarchical Colloidal Quantum Dot Assemblies
基于分层胶体量子点组件的高性能超级电容器
- 批准号:
21K04815 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Scalable Nanomanufacturing of Hierarchical Nanometer-Scale Colloidal Assemblies Using Integrated Electrospray and Microfluidics
使用集成电喷雾和微流体技术进行分层纳米级胶体组件的可扩展纳米制造
- 批准号:
1914436 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Multiscale molecular dynamics approaches to investigate non-equilibrium phenomena of colloidal assemblies
研究胶体组装非平衡现象的多尺度分子动力学方法
- 批准号:
2135626 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Studentship
Self-Organized Colloidal Assemblies in Confined Spaces:Formation Mechanism, Internal Structure and Resulting Optical Properties
密闭空间中的自组织胶体组件:形成机制、内部结构和由此产生的光学性质
- 批准号:
338276051 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Formation of supermolecular assemblies on colloidal surfaces
在胶体表面形成超分子组装体
- 批准号:
262987-2006 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Creation of non-close-packed colloidal crystals by assemblies of anisotropically shaped particles under external fields
通过在外部场下组装各向异性形状的颗粒来创建非密堆积胶体晶体
- 批准号:
23681020 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (A)
Formation of supermolecular assemblies on colloidal surfaces
在胶体表面形成超分子组装体
- 批准号:
262987-2006 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Formation of supermolecular assemblies on colloidal surfaces
在胶体表面形成超分子组装体
- 批准号:
262987-2006 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
CAREER: Colloidal Origami: Directing and Designing Complex Colloidal Assemblies Using Magnetic Fields
职业:胶体折纸:使用磁场指导和设计复杂的胶体组件
- 批准号:
0955003 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Experimental and Theoretical Investigations of Electrostatic Interactions and Ordering in Highly Charged Colloidal Assemblies
高电荷胶体组件中静电相互作用和有序化的实验和理论研究
- 批准号:
0848265 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




