FRG: Collaborative Research: Dynamics of elastic biostructures in complex fluids
FRG:合作研究:复杂流体中弹性生物结构的动力学
基本信息
- 批准号:0652427
- 负责人:
- 金额:$ 10.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Problems in biological fluid dynamics typically involve the interaction of an elastic structure with a surrounding fluid. Mucus transport by cilia in the respiratory tract, sperm penetration of the oocyte in fertilization, and peristaltic contractions of the oviduct are examples of such interactions. Many biological fluids are actually complex; that is they are not liquids or mixtures of a simple molecular structure that yields Newtonian responses, but instead have complicated non-Newtonian mechanical responses that arise, usually, because they have suspended microstructure. While much progress has been made in the development of mathematical models and numerical methods for fluid-structure interactions in a Newtonian fluid, much work needs to be done in the case of complex fluids. This focused research group will use a combination of analytical, computational and experimental tools to investigate the dynamics of elastic structures coupled to a complex fluid. Accurate and robust numerical methods for viscoelastic fluids coupled to moving and flexible boundaries will be developed that build upon classical immersed boundary methods and particle methods previously designed for Newtonian fluids. Continuum descriptions of the viscoelastic fluid will be implemented, as well as models that track discrete viscoelastic microstructure of the fluid. While the methods developed will be widely applicable, the team will focus upon the biofluidmechanics of reproduction, nematode motility in microfluidic chambers, as well as mucus-ciliary transport. Computational models will be coordinated with physical and biological experiments performed at the Applied Mathematics Lab at the Courant Institute.Mathematics has had a huge impact on engineering and the physical sciences through its development of theoretical analyses and numerical methods for Newtonian fluid flows. The dynamics of complex fluids is emerging as another such opportunity, and is one which draws some of its richest problems from new areas in biophysics and engineering, medicine and reproductive health, and from core biology. The integration of mathematical and computational analysis into biological science presents educational challenges and great opportunities. This research project embraces these challenges, and is based upon collaborations of investigators at four institutions - Tulane University, New York University, Washington State University and the University of California, Los Angeles. A central component of this project is the training of graduate students and postdoctoral researchers. This FRG project will sponsor two summer programs, where the postdoctoral researchers and graduate students will spend six weeks at the Applied Mathematics Lab at Courant Institute. This will provide opportunities for all the students and postdocs involved in the project to work together side by side, develop a comprehensive understanding of the various aspects of the research, and experience and participate in the life of a working fluids lab.
生物流体动力学中的问题通常涉及弹性结构与周围流体的相互作用。呼吸道纤毛的粘液运输、受精过程中精子穿透卵母细胞以及输卵管的蠕动收缩都是这种相互作用的例子。许多生物流体实际上是复杂的;也就是说,它们不是产生牛顿响应的简单分子结构的液体或混合物,而是具有复杂的非牛顿力学响应,通常是因为它们具有悬浮的微观结构。 虽然牛顿流体中的流体-结构相互作用的数学模型和数值方法的发展已经取得了很大的进展,但在复杂流体的情况下,还有很多工作要做。这个重点研究小组将使用分析,计算和实验工具的组合,以研究耦合到复杂流体的弹性结构的动力学。粘弹性流体耦合到移动和柔性边界的精确和强大的数值方法将开发建立在经典的浸入边界方法和粒子方法以前设计的牛顿流体。将实施粘弹性流体的连续描述,以及跟踪流体的离散粘弹性微观结构的模型。虽然开发的方法将广泛适用,但该团队将专注于繁殖的生物流体力学,微流体室中的线虫运动以及粘液纤毛运输。计算模型将与柯朗研究所应用数学实验室进行的物理和生物实验相协调。数学通过其对牛顿流体流动的理论分析和数值方法的发展对工程和物理科学产生了巨大的影响。 复杂流体的动力学正在成为另一个这样的机会,并且是一个从生物物理学和工程学,医学和生殖健康以及核心生物学的新领域中吸引了一些最丰富的问题。数学和计算分析融入生物科学提出了教育的挑战和巨大的机遇。本研究项目接受这些挑战,并基于四个机构的研究人员的合作-杜兰大学,纽约大学,华盛顿州立大学和加州大学,洛杉矶。 该项目的一个核心组成部分是培训研究生和博士后研究人员。 这个FRG项目将赞助两个暑期项目,博士后研究人员和研究生将在柯朗研究所的应用数学实验室度过六周。这将为参与该项目的所有学生和博士后提供并肩工作的机会,全面了解研究的各个方面,并体验和参与工作流体实验室的生活。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Teran其他文献
Visualization of vascular injuries in extremity trauma
- DOI:
10.1007/s11517-017-1619-9 - 发表时间:
2017-02-11 - 期刊:
- 影响因子:2.600
- 作者:
Kwitae Chong;Chenfanfu Jiang;Daniel Ram;Anand Santhanam;Demetri Terzopoulos;Peyman Benharash;Erik Dutson;Joseph Teran;Jeff D. Eldredge - 通讯作者:
Jeff D. Eldredge
Joseph Teran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Teran', 18)}}的其他基金
RI: Small: Collaborative Research: An accelerated numerical solver framework for simulation of solid-fluid dynamics
RI:小型:协作研究:用于模拟固液动力学的加速数值求解器框架
- 批准号:
1422795 - 财政年份:2014
- 资助金额:
$ 10.34万 - 项目类别:
Standard Grant
A novel framework for fluid/structure interaction in subject-specific surgical simulations involving elastic cardiac geometries
涉及弹性心脏几何形状的特定主题手术模拟中流体/结构相互作用的新框架
- 批准号:
0914813 - 财政年份:2009
- 资助金额:
$ 10.34万 - 项目类别:
Standard Grant
An Optimization Framework for the Estimation of Material Properties of Deformable Materials from Volumetric Deformation Measurements
通过体积变形测量估计可变形材料的材料特性的优化框架
- 批准号:
0830554 - 财政年份:2008
- 资助金额:
$ 10.34万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 10.34万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 10.34万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 10.34万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 10.34万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 10.34万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 10.34万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 10.34万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 10.34万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 10.34万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 10.34万 - 项目类别:
Continuing Grant