FRG: Collaborative Research: Algorithmic Randomness

FRG:协作研究:算法随机性

基本信息

  • 批准号:
    0652450
  • 负责人:
  • 金额:
    $ 3.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

This Focused Research Group is a collaborative effort by researchers at many sites who bring ideas from recursion theory, complexity theory, and other specialties to bear on questions about algorithmic randomness. Important background notions include the ideas of Kolmogorov complexity and Martin-Lof randomness, which have separately and jointly received large amounts of attention, and which come together in many of the examples and problems described in this proposal. Issues to be studied during the project include relationships between Martin-Lof random sets and Hausdorff dimension or other measures of dimension, methods for extracting randomness from a semi-random source of data, dimensions and other properties of complexity classes of strings, distinctive properties of sets with low Kolmogorov complexity, and relationships between algorithmic randomness and reverse mathematics, which seeks to understand the axiomatic strength required by particular theories.The forms of randomness studied by this group of researchers are based on some appealing ideas regarding infinite strings, such as the record of an infinitely repeated series of coin tosses. Intuitively, the Kolmogorov complexity of a binary string like the record of heads and tails from coin tosses is the length of the shortest definitive description of the string. Digitization methods for voice and picture transmission take advantage of the regularity and repetition in typical voice signals or digitized images, using much less space or time to record the sound or image data than might seem necessary.From the point of view of Kolmogorov complexity, a genuinely random binary string is probably its own shortest description, or nearly so.Some of the problems studied by this research group seek to establish properties of subsets of strings that have the same complexity, such as their dimension. Activities of the group will include workshops, summer schools for graduate students, and travel for collaboration.
这个聚焦研究小组是由许多站点的研究人员共同努力的结果,他们从递归理论、复杂性理论和其他专业领域带来了关于算法随机性问题的想法。 重要的背景概念包括Kolmogorov复杂性和Martin-Lof随机性的思想,它们分别和共同受到了大量的关注,并在本提案中描述的许多例子和问题中结合在一起。 项目期间要研究的问题包括马丁-洛夫随机集和豪斯多夫维数或其他维数度量之间的关系,从半随机数据源中提取随机性的方法,字符串复杂性类的维数和其他属性,具有低柯尔莫哥洛夫复杂性的集合的独特属性,以及算法随机性和逆向数学之间的关系,这组研究人员所研究的随机性形式是基于一些关于无限弦的吸引人的想法,例如一系列无限重复的抛硬币的记录。 直观地说,二进制字符串的柯尔莫哥洛夫复杂度(Kolmogorov complexity)就像掷硬币时的正反记录一样,是该字符串最短确定描述的长度。 语音和图像传输的数字化方法利用了典型语音信号或数字化图像中的规律性和重复性,使用比看起来必要的少得多的空间或时间来记录声音或图像数据。从柯尔莫哥洛夫复杂性的角度来看,真正随机的二进制串可能是其自身的最短描述,这个研究小组研究的一些问题试图建立具有相同复杂性的字符串子集的属性,例如它们的维数。 该小组的活动将包括讲习班、研究生暑期学校和合作旅行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

R. Daniel Mauldin其他文献

AnL 1 counting problem in ergodic theory
  • DOI:
    10.1007/bf02791503
  • 发表时间:
    2005-12-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Idris Assani;Zoltán Buczolich;R. Daniel Mauldin
  • 通讯作者:
    R. Daniel Mauldin
The Generalized Riemann Integral, by Robert M. McLeod
  • DOI:
    10.1007/bf03023557
  • 发表时间:
    1982-12-01
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    R. Daniel Mauldin
  • 通讯作者:
    R. Daniel Mauldin
Bijections of #x211D; n onto itself
  • DOI:
    10.1007/bf00183024
  • 发表时间:
    1988-06-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    R. J. Gardner;R. Daniel Mauldin
  • 通讯作者:
    R. Daniel Mauldin
Randomly generated distributions
  • DOI:
    10.1007/bf02761647
  • 发表时间:
    1995-10-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    R. Daniel Mauldin;Michael G. Monticino
  • 通讯作者:
    Michael G. Monticino
Some remarks on output measures
  • DOI:
    10.1016/j.topol.2004.08.012
  • 发表时间:
    2005-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tomasz Downarowicz;R. Daniel Mauldin
  • 通讯作者:
    R. Daniel Mauldin

R. Daniel Mauldin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('R. Daniel Mauldin', 18)}}的其他基金

Measures, Dimensions and Dynamics
测量、尺寸和动态
  • 批准号:
    0700831
  • 财政年份:
    2007
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Continuing Grant
Measures, Dimension and Dynamics
测量、维度和动态
  • 批准号:
    0400481
  • 财政年份:
    2004
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Standard Grant
Measures, Dimensions and Dynamics
测量、尺寸和动态
  • 批准号:
    0100078
  • 财政年份:
    2001
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Continuing Grant
Measures, Dynamics and Dimensions
测量、动态和尺寸
  • 批准号:
    9801583
  • 财政年份:
    1998
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Continuing Grant
Southwest Regional Workshop on New Directions in Dynamical Systems
西南地区动力系统新方向研讨会
  • 批准号:
    9619881
  • 财政年份:
    1997
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Measures, Dynamics and Dimensions
数学科学:测量、动力学和维度
  • 批准号:
    9502952
  • 财政年份:
    1995
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Measures, Dynamics and Dimensions
数学科学:测量、动力学和维度
  • 批准号:
    9303888
  • 财政年份:
    1993
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Measure and Dimension, Scaling, Random Objects and Selections
数学科学:测量和尺寸、缩放、随机对象和选择
  • 批准号:
    9007035
  • 财政年份:
    1990
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Descriptive Set Theoretic and Probabilistic Methods in Topology and Analysis
数学科学:拓扑与分析中的描述集理论和概率方法
  • 批准号:
    8803361
  • 财政年份:
    1988
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Topics in Topology
数学科学:拓扑主题
  • 批准号:
    8610860
  • 财政年份:
    1986
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了