Resolution of Singularities in Analysis

分析中奇点的解决

基本信息

  • 批准号:
    0654073
  • 负责人:
  • 金额:
    $ 10.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-15 至 2009-03-31
  • 项目状态:
    已结题

项目摘要

Over the last several years, Greenblatt has been working on resolution of singularities, and he recently has proved an n-dimensional local resolution of singularities algorithm for real-analyticfunctions. This method is explicit, elementary, and done in coordinates. In his subsequent research,he will apply his methods, using additional ideas when appropriate, to prove theorems involving oscillatory integrals, Radon transforms, and other subjects in which he has done research. In addition to these areas, he will branch out into several other of the diverse areas that relate to resolution of singularities. For example, he intends to work on multilinear generalizations of oscillatory integral operators, problems related to the stability of integrals, and associated problems in algebraic geometry such as those involving multiplier sheaves. In addition, intriguing algorithmic and computational questions arose during the development of [G1], and he plans to investigate such issues in computational algebraic geometry.Oscillatory integral operators are a part of Fourier analysis, a field with wide application inscience and engineering, such as in signal processing, cryptography, and statistics. As a result,improved understanding of oscillatory integral operators resulting from this research has the potential to help in the development of scientific applications that use Fourier analytic methods. In addition, Radon transforms are fundamental to MRI and other medical imaging applications, and also find uses in diverse fields ranging from oil exploration to homeland security. As a result, improved theoretical knowledge of Radon transforms resulting from this research may lead to advances in such fields.
在过去的几年里,Greenblatt一直致力于奇点分解,最近他证明了实解析函数的n维局部奇点分解算法。这个方法是显式的、基本的,并且是在坐标中完成的。在他随后的研究中,他将应用他的方法,在适当的时候使用额外的想法,来证明涉及振荡积分、Radon变换和其他他研究过的学科的定理。除了这些领域,他还将扩展到其他几个与奇点分解有关的不同领域。例如,他打算研究振荡积分算子的多线性推广,与积分稳定性有关的问题,以及代数几何中的相关问题,如涉及乘子层的问题。此外,在[G1]的发展过程中出现了有趣的算法和计算问题,他计划在计算代数几何中研究这些问题。振荡积分算子是傅立叶分析的一部分,该领域在科学和工程中有广泛的应用,如信号处理、密码学和统计学。因此,通过这项研究提高对振荡积分算子的理解,有可能帮助开发使用傅立叶分析方法的科学应用程序。此外,Radon变换是核磁共振成像和其他医学成像应用的基础,也可以在从石油勘探到国土安全的不同领域中找到用途。因此,通过这项研究提高了对Radon变换的理论知识,可能会促进这一领域的进步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Greenblatt其他文献

Singular integral operators with kernels associated to negative powers of real-analytic functions
  • DOI:
    10.1016/j.jfa.2015.06.014
  • 发表时间:
    2015-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michael Greenblatt
  • 通讯作者:
    Michael Greenblatt
$$L^p$$ Sobolev Regularity for a Class of Radon and Radon-Like Transforms of Various Codimension
A Method for Bounding Oscillatory Integrals in Terms of Non-oscillatory Integrals
  • DOI:
    10.1007/s12220-025-01966-w
  • 发表时间:
    2025-03-18
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Michael Greenblatt
  • 通讯作者:
    Michael Greenblatt
Hyperplane Integrability Conditions and Smoothing for Radon Transforms
  • DOI:
    10.1007/s12220-020-00410-5
  • 发表时间:
    2020-04-21
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Michael Greenblatt
  • 通讯作者:
    Michael Greenblatt
Applications of an elementary resolution of singularities algorithm to exponential sums and congruences modulo p n
  • DOI:
    10.1007/s11856-016-1288-7
  • 发表时间:
    2016-01-07
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Michael Greenblatt
  • 通讯作者:
    Michael Greenblatt

Michael Greenblatt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Greenblatt', 18)}}的其他基金

Topics in analysis related to resolution of singularities
与奇点解决相关的分析主题
  • 批准号:
    1001070
  • 财政年份:
    2010
  • 资助金额:
    $ 10.74万
  • 项目类别:
    Standard Grant
Resolution of Singularities in Analysis
分析中奇点的解决
  • 批准号:
    0919713
  • 财政年份:
    2008
  • 资助金额:
    $ 10.74万
  • 项目类别:
    Standard Grant

相似海外基金

Resolution of Singularities and its applications. Analysis on and geometry of singular spaces.
奇点的解决及其应用。
  • 批准号:
    8949-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 10.74万
  • 项目类别:
    Discovery Grants Program - Individual
Resolution of Singularities and its applications. Analysis on and geometry of singular spaces.
奇点的解决及其应用。
  • 批准号:
    8949-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 10.74万
  • 项目类别:
    Discovery Grants Program - Individual
Resolution of singularities by using Newton polyhedra and its application to analysis
牛顿多面体奇点解析及其在分析中的应用
  • 批准号:
    15K04932
  • 财政年份:
    2015
  • 资助金额:
    $ 10.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Resolution of Singularities and its applications. Analysis on and geometry of singular spaces.
奇点的解决及其应用。
  • 批准号:
    8949-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 10.74万
  • 项目类别:
    Discovery Grants Program - Individual
Resolution of Singularities and its applications. Analysis on and geometry of singular spaces.
奇点的解决及其应用。
  • 批准号:
    8949-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 10.74万
  • 项目类别:
    Discovery Grants Program - Individual
Resolution of Singularities and its applications. Analysis on and geometry of singular spaces.
奇点的解决及其应用。
  • 批准号:
    8949-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 10.74万
  • 项目类别:
    Discovery Grants Program - Individual
Resolution of singularities in harmonic analysis
谐波分析中奇点的解决
  • 批准号:
    389016-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 10.74万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Resolution of singularities in harmonic analysis
谐波分析中奇点的解决
  • 批准号:
    389016-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 10.74万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Topics in analysis related to resolution of singularities
与奇点解决相关的分析主题
  • 批准号:
    1001070
  • 财政年份:
    2010
  • 资助金额:
    $ 10.74万
  • 项目类别:
    Standard Grant
Resolution of singularities in harmonic analysis
谐波分析中奇点的解决
  • 批准号:
    389016-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 10.74万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了