Program Generation for Parallel Platforms
并行平台的程序生成
基本信息
- 批准号:0702386
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The clock speed of microprocessors has finally reached its practical limits. Future performance gains will only be obtained through various forms of parallelism such as integrating multiple CPU cores on one chip: The area of mainstream parallelism has started. This will pose an enormous burden on the developers of high performance libraries. Optimal code has to be carefully tuned to every specific platform including its memory hierarchy, special instruction sets, and the forms of parallelism it provides. This time-consuming process is repeated for every new platform released. It is time to ask the question: Can computers write these libraries for us?The goal of this research is to develop a program generation system that completelyautomates the implementation and optimization of a large class of performance-critical library functionality. This class will at least include linear transforms, a set of dense linear algebra problems, correlation, a set of decoders, and numerical integration. The program generation system will produce code that is optimized to a computer's memory hierarchy and that is parallelized, if required, for vector architectures, shared or distributed memory parallelism, or even streaming parallelism in graphics processing units (GPUs), or a for a combination of those. The performance of the generated code should be competitive with the best hand-written code available. "Program generation" means that the system takes as input only the problem specification. In other words, the computer itself writes highly optimized and, if desired, already parallelized source code. To achieve this, the knowledge about alternative algorithms and about algorithm optimization has to be formalized in a way that it can be done by the computer. In summary, the goal is to enable computers to write very fast libraries for well-understood numerical functionality and for a wide range of parallel platforms.
微处理器的时钟速度终于达到了它的实际极限。未来的性能提升只能通过各种形式的并行来实现,例如在一个芯片上集成多个CPU内核:主流并行领域已经开始。这将给高性能库的开发人员带来巨大的负担。最佳代码必须仔细调整到每个特定的平台,包括它的内存层次结构,特殊的指令集,以及它提供的并行形式。这个耗时的过程在每个新发布的平台上重复。现在是时候问这个问题了:计算机能为我们编写这些库吗?本研究的目标是开发一个程序生成系统,完全自动化的实现和优化的一大类性能关键库功能。这门课将至少包括线性变换,一组稠密线性代数问题,相关性,一组解码器和数值积分。程序生成系统将产生针对计算机的存储器层次结构优化的代码,并且如果需要的话,针对向量架构、共享或分布式存储器并行性、或者甚至图形处理单元(GPU)中的流并行性、或者针对这些的组合进行并行化。生成的代码的性能应该与可用的最好的手写代码竞争。“程序生成”意味着系统只接受问题说明作为输入。换句话说,计算机本身编写高度优化的,如果需要的话,已经并行化的源代码。为了实现这一点,关于替代算法和算法优化的知识必须以计算机可以完成的方式形式化。总之,目标是使计算机能够编写非常快的库,用于很好理解的数值功能和广泛的并行平台。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Franz Franchetti其他文献
Accelerating Architectural Simulation Via Statistical Techniques: A Survey
通过统计技术加速建筑模拟:调查
- DOI:
10.1109/tcad.2015.2481796 - 发表时间:
2016-03 - 期刊:
- 影响因子:2.9
- 作者:
Qi Guo;Tianshi Chen;Yunji Chen;Franz Franchetti - 通讯作者:
Franz Franchetti
An Auto-tuning with Adaptation of A64 Scalable Vector Extension for SPIRAL
SPIRAL的A64可扩展向量扩展的自动调整
- DOI:
10.1109/ipdpsw52791.2021.00117 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Naruya Kitai;Daisuke Takahashi;Franz Franchetti;Takahiro Katagiri;Satoshi Ohshima and Toru Nagai - 通讯作者:
Satoshi Ohshima and Toru Nagai
Franz Franchetti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Franz Franchetti', 18)}}的其他基金
CSR: Medium: Collaborative Research: Enabling GPUs as First-Class Computing Engines
CSR:媒介:协作研究:使 GPU 成为一流的计算引擎
- 批准号:
1409723 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Continuing Grant
CSR: Small: High-Performance and Energy-Efficient Single-Level Stores: Efficient Coordinated Management of Storage and Memory
CSR:小:高性能、高能效的单级存储:存储和内存的高效协调管理
- 批准号:
1320531 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
EAGER: A Study of the Limitations of High Performance Code Generation in Vectorizing Compilers
EAGER:矢量化编译器中高性能代码生成的局限性研究
- 批准号:
1251185 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
SHF: Small: HotBench: An Optimization Workbench for Hotspots
SHF:小型:HotBench:热点优化工作台
- 批准号:
1116802 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
International Conference on Parallel Architectures and Compilation Techniques (PACT) 2010 Student Scholarships
国际并行架构和编译技术会议 (PACT) 2010 学生奖学金
- 批准号:
1023812 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
RII Track-4: NSF: Massively Parallel Graph Processing on Next-Generation Multi-GPU Supercomputers
RII Track-4:NSF:下一代多 GPU 超级计算机上的大规模并行图形处理
- 批准号:
2229394 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Analysis and Implementation of Parallel Solvers for PDE Based Mesh Generation and Coupled Systems
基于偏微分方程的网格生成和耦合系统并行求解器的分析与实现
- 批准号:
RGPIN-2018-04881 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Solar-thermal desalination system for parallel water-electricity generation
水电并行发电的光热海水淡化系统
- 批准号:
DP220100583 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Projects
Analysis and Implementation of Parallel Solvers for PDE Based Mesh Generation and Coupled Systems
基于偏微分方程的网格生成和耦合系统并行求解器的分析与实现
- 批准号:
RGPIN-2018-04881 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Analysis and Implementation of Parallel Solvers for PDE Based Mesh Generation and Coupled Systems
基于偏微分方程的网格生成和耦合系统并行求解器的分析与实现
- 批准号:
RGPIN-2018-04881 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
FET: Medium: Massively parallel DNA computation using DNA array synthesis, next generation sequencing and nanopore sensing
FET:中:使用 DNA 阵列合成、下一代测序和纳米孔传感进行大规模并行 DNA 计算
- 批准号:
1954665 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
Acquisition of a parallel stirred-tank bioreactor system to accelerate and advance the development of next-generation probiotics
收购并行搅拌罐生物反应器系统,以加速和推进下一代益生菌的开发
- 批准号:
10389127 - 财政年份:2020
- 资助金额:
-- - 项目类别:
CCRI: Medium: Cilk Infrastructure for Next-Generation Parallel-Programming Research
CCRI:Medium:用于下一代并行编程研究的 Cilk 基础设施
- 批准号:
1925609 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Massively parallel cancer evolution simulation to elucidate mechanisms of intratumor heterogeneity generation
大规模并行癌症进化模拟阐明肿瘤内异质性产生的机制
- 批准号:
19K12214 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mentoring the Next Generation of Parallel Processing Researchers at IEEE-CSTCPP Sponsored Conferences
在 IEEE-CSTCPP 赞助的会议上指导下一代并行处理研究人员
- 批准号:
1937369 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant