Studies of Magnetic Domain Wall Injection and Manipulation in a Magnetic Nanowire using Micromagnetic Simulation
使用微磁模拟研究磁纳米线中的磁畴壁注入和操纵
基本信息
- 批准号:0706194
- 负责人:
- 金额:$ 10.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-12-15 至 2010-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARY:This award supports computational and theoretical research that is well integrated with undergraduate student education. This initiative aims to advance the theory and computer simulation of magnetic nanowires as they may be used in nanoscale recording devices. Research efforts will be made to understand and advance the manipulation of nanoscale magnetic structures that are needed to understand and control magnetic nanowires and promote their future use in high density and extremely small magnetic recording devices. The project will engage undergraduate physics majors to participate in carrying out computer simulations. Students will benefit from the research experience and in the process add to their education in magnetic materials and nanotechnology.New theories and computer simulations will be employed to understand and predict the small magnetic domains that can be created in nanowires. The motion of these small magnetic areas is the subject of current experiments and theories because of the potential application in minute magnetic storage applications. This work employs micromagnetic simulation methods to help test and validate theories and aid in the interpretation of experiments on motion of the magnetic domains.The primary research issue in advancing the use of magnetic devices is the speed at which magnetic domains change. The combination of nanometer spatial resolution with concurrent picosecond temporal resolution makes micromagnetic simulation an ideal method for studying the field driven domain wall motion in a magnetic nanowire. Dynamic observation of domain wall motion in a magnetic nanowire is difficult experimentally due to the small size of nanowires. The development of faithful simulation methods will yield answers to important questions about domain wall motion in nanowires. Investigations will yield information on dynamic domain wall size and structure. It can be determined what limits the wire dimensions put on the maximum domain wall speed and how the motion of a domain wall depends on the strength and direction of the applied field. Ultimately, this leads to identifying the mechanisms and conditions necessary to increase domain wall speeds. The results of the proposed simulations are also important to understanding how to manipulate the location of a domain wall in the nanowire which is then the basis for switching and logic. Reliable control of the domain wall location and motion in magnetic nanowires is essential to proposed future generations of magnetic hard drives, as well as the logic devices. The low speed motion of domain walls above the critical field has not been fully explored. Above the critical field, the walls move in uniform steps along the wire. Manipulating the size of these steps could lead to the creation of variable magnetic field sensors which depend on the wall location. NON-TECHNICAL SUMMARY:This award supports computational and theoretical research that is well integrated with undergraduate student education. In this initiative research and education are developed to advance the theory of and the use of computers to simulate magnetic materials for nanoscale recording devices. Research efforts concentrate on understanding and advancing the manipulation of nanoscale magnetic structures that are needed to understand and control magnetic nanodevices and promote their future use in high density and extremely small magnetic recording devices.The project engages undergraduate physics majors to participate in carrying out the computer simulation. Students benefit from the research experience and in the process add to their education in magnetic materials and nanotechnology.New theories and computer simulations are employed to understand and predict the small magnetic domains that can be created in nanodevices. The motion of these small magnetic areas is the subject of current experiments and theories because of the potential application in minute magnetic storage applications. This work employs computer simulation methods to help test and validate theories and aid in the interpretation of experiments on motion of the magnetic regions.The results of the proposed simulations are also important to understanding how to manipulate the location of a magnetic region in the nanowire which is then the basis for switching and logic. Reliable control of the magnetic region location and motion in magnetic nanodevices is essential to future generations of magnetic hard drives, as well as the logic devices. Manipulating the motion could lead to the creation of variable magnetic field sensors which depend on the magnetic region location.
技术概述:该奖项支持与本科生教育相结合的计算和理论研究。这一倡议旨在推进磁性纳米线的理论和计算机模拟,因为它们可能用于纳米级记录设备。将努力研究了解和推进理解和控制磁性纳米线所需的纳米级磁性结构的操纵,并促进它们未来在高密度和极小的磁记录设备中的应用。该项目将邀请物理学专业的本科生参与进行计算机模拟。学生将从研究经验中受益,并在此过程中增加他们在磁性材料和纳米技术方面的教育。新的理论和计算机模拟将被用来理解和预测可以在纳米线中产生的小磁区。这些小磁区的运动是当前实验和理论的主题,因为它在微小的磁存储应用中具有潜在的应用。这项工作使用微磁模拟方法来帮助测试和验证理论,并帮助解释磁域运动的实验。推动磁性器件使用的主要研究问题是磁域变化的速度。纳米空间分辨率和皮秒时间分辨率的结合使得微磁模拟成为研究磁性纳米线中场驱动磁区壁面运动的理想方法。由于纳米线的尺寸较小,在实验上很难动态观察磁性纳米线中的磁畴壁运动。可靠的模拟方法的发展将给出关于纳米线中的磁场壁运动的重要问题的答案。调查将提供有关动态磁区壁大小和结构的信息。可以确定施加在最大磁区壁速度上的导线尺寸的限制,以及磁区壁的运动如何取决于外加电场的强度和方向。最终,这将导致确定提高磁区壁速度所必需的机制和条件。所提出的模拟结果对于理解如何操纵纳米线中的磁区壁的位置也很重要,这是开关和逻辑的基础。可靠地控制磁性纳米线中的磁畴壁位置和运动对于提出的未来一代磁性硬盘驱动器以及逻辑器件是至关重要的。在临界场以上的磁区壁的低速运动还没有得到充分的研究。在临界场以上,墙壁沿着导线以均匀的步长移动。操纵这些步骤的大小可能会产生依赖于壁面位置的可变磁场传感器。非技术总结:该奖项支持与本科生教育相结合的计算和理论研究。在这一倡议中,开展了研究和教育,以促进计算机模拟纳米级记录设备的磁性材料的理论和使用。研究工作集中在了解和推进纳米级磁性结构的操作,这些结构是理解和控制磁性纳米设备所需的,并促进它们未来在高密度和极小的磁记录设备中的应用。该项目邀请物理学专业的本科生参与进行计算机模拟。学生从研究经验中受益,并在这个过程中增加了他们在磁性材料和纳米技术方面的教育。新的理论和计算机模拟被用来理解和预测可以在纳米设备中产生的小磁区。这些小磁区的运动是当前实验和理论的主题,因为它在微小的磁存储应用中具有潜在的应用。这项工作利用计算机模拟方法来帮助测试和验证理论,并帮助解释磁区运动的实验。所提出的模拟结果对于理解如何操纵纳米线中磁区的位置也很重要,这是开关和逻辑的基础。对磁性纳米器件中磁区位置和运动的可靠控制对于下一代磁性硬盘驱动器以及逻辑器件来说是至关重要的。操纵这一运动可能会产生依赖于磁区位置的可变磁场传感器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Kunz其他文献
Andrew Kunz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Kunz', 18)}}的其他基金
Micromagnetic Study of Controllable Domain Wall Motion in Ferromagnetic Nanowire Arrays via Transverse Magnetic Fields
通过横向磁场对铁磁纳米线阵列中可控畴壁运动的微磁研究
- 批准号:
1309094 - 财政年份:2013
- 资助金额:
$ 10.8万 - 项目类别:
Continuing Grant
Controlling Multiple Domain Walls in Ferromagnetic Nanowires with Magnetic Fields Studies by Micromagnetic Simulation
通过微磁模拟研究磁场控制铁磁纳米线中的多个畴壁
- 批准号:
1006947 - 财政年份:2010
- 资助金额:
$ 10.8万 - 项目类别:
Continuing Grant
相似海外基金
Fundamental rock magnetic studies on single-domain particles and anisotropy, and applications to paleomagnetism and petrophysics
单域粒子和各向异性的基础岩石磁性研究及其在古地磁学和岩石物理学中的应用
- 批准号:
RGPIN-2017-04165 - 财政年份:2021
- 资助金额:
$ 10.8万 - 项目类别:
Discovery Grants Program - Individual
Fundamental rock magnetic studies on single-domain particles and anisotropy, and applications to paleomagnetism and petrophysics
单域粒子和各向异性的基础岩石磁性研究及其在古地磁学和岩石物理学中的应用
- 批准号:
RGPIN-2017-04165 - 财政年份:2020
- 资助金额:
$ 10.8万 - 项目类别:
Discovery Grants Program - Individual
Fundamental rock magnetic studies on single-domain particles and anisotropy, and applications to paleomagnetism and petrophysics
单域粒子和各向异性的基础岩石磁性研究及其在古地磁学和岩石物理学中的应用
- 批准号:
RGPIN-2017-04165 - 财政年份:2019
- 资助金额:
$ 10.8万 - 项目类别:
Discovery Grants Program - Individual
Fundamental rock magnetic studies on single-domain particles and anisotropy, and applications to paleomagnetism and petrophysics
单域粒子和各向异性的基础岩石磁性研究及其在古地磁学和岩石物理学中的应用
- 批准号:
RGPIN-2017-04165 - 财政年份:2018
- 资助金额:
$ 10.8万 - 项目类别:
Discovery Grants Program - Individual
Fundamental rock magnetic studies on single-domain particles and anisotropy, and applications to paleomagnetism and petrophysics
单域粒子和各向异性的基础岩石磁性研究及其在古地磁学和岩石物理学中的应用
- 批准号:
RGPIN-2017-04165 - 财政年份:2017
- 资助金额:
$ 10.8万 - 项目类别:
Discovery Grants Program - Individual
Fundamental rock magnetic studies on single-domain particles, impressed magnetic anisotropy, and the application of rock magnetic techniques to petrophysics
单畴粒子的基础岩石磁学研究、外加磁各向异性以及岩石磁学技术在岩石物理学中的应用
- 批准号:
386245-2010 - 财政年份:2016
- 资助金额:
$ 10.8万 - 项目类别:
Discovery Grants Program - Individual
Fundamental rock magnetic studies on single-domain particles, impressed magnetic anisotropy, and the application of rock magnetic techniques to petrophysics
单畴粒子的基础岩石磁学研究、外加磁各向异性以及岩石磁学技术在岩石物理学中的应用
- 批准号:
386245-2010 - 财政年份:2013
- 资助金额:
$ 10.8万 - 项目类别:
Discovery Grants Program - Individual
Fundamental rock magnetic studies on single-domain particles, impressed magnetic anisotropy, and the application of rock magnetic techniques to petrophysics
单畴粒子的基础岩石磁学研究、外加磁各向异性以及岩石磁学技术在岩石物理学中的应用
- 批准号:
386245-2010 - 财政年份:2012
- 资助金额:
$ 10.8万 - 项目类别:
Discovery Grants Program - Individual
Fundamental rock magnetic studies on single-domain particles, impressed magnetic anisotropy, and the application of rock magnetic techniques to petrophysics
单畴粒子的基础岩石磁学研究、外加磁各向异性以及岩石磁学技术在岩石物理学中的应用
- 批准号:
386245-2010 - 财政年份:2011
- 资助金额:
$ 10.8万 - 项目类别:
Discovery Grants Program - Individual
Fundamental rock magnetic studies on single-domain particles, impressed magnetic anisotropy, and the application of rock magnetic techniques to petrophysics
单畴粒子的基础岩石磁学研究、外加磁各向异性以及岩石磁学技术在岩石物理学中的应用
- 批准号:
386245-2010 - 财政年份:2010
- 资助金额:
$ 10.8万 - 项目类别:
Discovery Grants Program - Individual