Differential graded categories and their applications in geometry

微分分级范畴及其在几何中的应用

基本信息

  • 批准号:
    0707210
  • 负责人:
  • 金额:
    $ 11.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-15 至 2011-07-31
  • 项目状态:
    已结题

项目摘要

The goal of this project is to study and develop applications of the apparatus of differential graded categories (DG) to several problems of geometry and mathematical physics. First, the PI would like to develop a DG version of the microlocal theory of constructible sheafs due to Kashiwara-Schapira and then, using this apparatus, given a symplectic manifold, he would like to construct a dg-category and to compare it with the Fukaya category.The PI would also like to continue his work on mathematically rigorous Poisson sigma-model, non-commutative calculus (with his collaborators), and theory of n-categories.Differential graded (DG) categories play an important role in a variety of problems in algebraic geometry and mathematical physics. The goal of this project is to further develop some applications of DG categories. One of these applications is aimed at providing an alternative construction of the celebrated Fukaya category, this construction is supposed to be more geometric and transparent in spirit. The PI would also like to continue on several topics from his previous research such as mathematically rigorous models of quantum field theory, non-commutative calculus (with his collaborators), and further development of the apparatus of DG categories.
本计画的目标是研究及发展微分分次范畴(DG)装置在几何与数学物理中的应用。 首先,PI想发展由Kashiwara Schapira提出的可构造层的微局部理论的DG版本,然后,使用这个装置,给定一个辛流形,他想构造一个DG-范畴,并将其与福谷范畴进行比较。PI还想继续他在数学上严格的Poisson sigma模型,非交换微积分,微分分次范畴(DG)在代数几何和数学物理中的许多问题中起着重要的作用。本项目的目标是进一步开发DG类别的一些应用。这些应用之一是旨在提供一个著名的福谷类别的替代结构,这种结构应该是更几何和透明的精神。PI还想继续他以前研究的几个主题,如量子场论的数学严格模型,非交换微积分(与他的合作者),以及DG类别设备的进一步发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dmitry Tamarkin其他文献

Quantization of lie Bialgebras via the Formality of the operad of Little Disks
  • DOI:
    10.1007/s00039-007-0591-1
  • 发表时间:
    2007-02-21
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Dmitry Tamarkin
  • 通讯作者:
    Dmitry Tamarkin

Dmitry Tamarkin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dmitry Tamarkin', 18)}}的其他基金

Emphasis Year in Noncommutative Geometry
非交换几何重点年
  • 批准号:
    1839515
  • 财政年份:
    2019
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Standard Grant
Properties and Applications of the Microlocal Category
微局部类别的属性和应用
  • 批准号:
    1612437
  • 财政年份:
    2016
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Standard Grant
Microlocal Category
微本地类别
  • 批准号:
    1105832
  • 财政年份:
    2011
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Standard Grant
Homological Methods in Quantum Field Theory
量子场论中的同调方法
  • 批准号:
    0401433
  • 财政年份:
    2004
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Standard Grant
Operations on Hochschild Chains and Cochains
Hochschild 链和 Cochains 上的操作
  • 批准号:
    0318570
  • 财政年份:
    2002
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Continuing Grant
Operations on Hochschild Chains and Cochains
Hochschild 链和 Cochains 上的操作
  • 批准号:
    0070717
  • 财政年份:
    2000
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Graded and Reliable Aerosol Deposition for Electronics (GRADE): Understanding Multi-Material Aerosol Jet Printing with In-Line Mixing
职业:电子产品的分级且可靠的气溶胶沉积 (GRADE):了解通过在线混合进行多材料气溶胶喷射打印
  • 批准号:
    2336356
  • 财政年份:
    2024
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Standard Grant
CAREER: Informed Testing — From Full-Field Characterization of Mechanically Graded Soft Materials to Student Equity in the Classroom
职业:知情测试 – 从机械分级软材料的全场表征到课堂上的学生公平
  • 批准号:
    2338371
  • 财政年份:
    2024
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Standard Grant
Creation of Lightweight, High-Strength Functionally Graded Materials Inspired by Job's Tears
受薏米的启发,创造轻质、高强度的功能梯度材料
  • 批准号:
    22KJ1626
  • 财政年份:
    2023
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Graded Symmetry in Algebra and Analysis
代数和分析中的分级对称性
  • 批准号:
    DP230103184
  • 财政年份:
    2023
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Discovery Projects
Could Ultrasonic Vocalisations Provide The Elusive, Graded Measure Of Affective State Needed To Inform Refinements For The Laboratory Rat?
超声波发声能否提供难以捉摸的、分级的情感状态测量,以通知实验室老鼠的改进?
  • 批准号:
    NC/Y00082X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Research Grant
Realization of Pre-Processing to Recognize Freely Handwritten Answer Characters to Graded Answer Images
自由手写答案字符识别对分级答案图像预处理的实现
  • 批准号:
    23K02675
  • 财政年份:
    2023
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
MODSEM. Graded network activation and connectivity during semantic processing depending on modality
调制解调器。
  • 批准号:
    EP/Y014367/1
  • 财政年份:
    2023
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Fellowship
Functionally graded material - Electroformed component robotic manufacturing
功能梯度材料——电铸部件机器人制造
  • 批准号:
    10074850
  • 财政年份:
    2023
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Collaborative R&D
Collaborative Research: Integrated Experiments and Modeling for Spatial, Finite, and Fast Rheometry of Graded Hydrogels using Inertial Cavitation
合作研究:利用惯性空化对梯度水凝胶进行空间、有限和快速流变测量的综合实验和建模
  • 批准号:
    2232426
  • 财政年份:
    2023
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Standard Grant
Understanding Mixed-Mode Fracture Mechanics in Additively Manufacturable Functionally Graded Microcellular Solids
了解可增材制造的功能梯度微孔固体中的混合模式断裂力学
  • 批准号:
    2317406
  • 财政年份:
    2023
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了