Pattern Formation and Nonlinear Dynamics in Reaction-Diffusion Systems Modeled by Anomalous Diffusion, and Applications

由反常扩散建模的反应扩散系统中的图案形成和非线性动力学及其应用

基本信息

  • 批准号:
    0707445
  • 负责人:
  • 金额:
    $ 38.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-15 至 2010-07-31
  • 项目状态:
    已结题

项目摘要

Proposal: DMS - 0707445 PI: Matkowsky, Bernard JInstitution: Northwestern UniversityTitle: Pattern Formation and Nonlinear Dynamics in Reaction-Diffusion Systems Modeled by Anomalous Diffusion, and Applications AbstractThe goal of the proposed study is to develop a theory of pattern formation and nonlinear dynamics in reaction-diffusion systems with anomalous diffusion. A characteristic feature of most of the reaction-diffusion systems that have been studied to date is that diffusion is normal, i.e., the dependence of the mean square displacement of a randomly walking particle on time is linear.In some cases, however, a more general dependence is observed, in which the mean square displacement behaves as a power function of time, and the diffusion of the reactants is anomalous. If the exponent is less than one the diffusion process is slower than normal diffusion and is called subdiffusion. In contrast, if the exponent is greater than one it is faster than normal and is called superdiffusion. Both types of anomalous diffusion have been recognized to play important roles in various physical, chemical, biological, geological, and other processes. For anomalous diffusion the reaction-diffusion system of partial differential equations is replaced by a system of fractional partial differential equations which have been derived from appropriate continuous time random walk models at the molecular level. The fractional equations are equivalent to systems of integro-differential equations which are the objects of our investigation. The proposed studies will involve both general reaction-diffusion systems with anomalous diffusion, and specific applications. Investigations of general reaction-diffusion systems will help elucidate the universal mechanisms of pattern formation and nonlinear dynamics under anomalous diffusion conditions. The specific models will include the famous chemical dynamics models such as the Brusselator, Oregonator, Gray-Scott, Gierer-Meinhardt, Fitzhugh-Nagumo, and other models, as well as models for combustion, polymerization, and controlled drug delivery. The effects of both sub- and superdiffusion will be considered.Reaction-diffusion systems are ubiquitous in many branches of science and have been attracting the attention of scientists, engineers and mathematicians for decades. Since the ground-breaking discoveries of Turing who showed that diffusion in a mixture of chemically reacting species could cause instability of a spatially uniform state leading to the formation of spatio-temporal patterns, and Belousov and Zhabotinskii who discovered oscillating chemical reactions, reaction-diffusion systems have become one of the paradigms for the formation of spatio-temporal patterns in systems far from thermodynamic equilibrium. The formation of such fascinating structures as spiral waves, spatially-regular, stationary patterns with different symmetries (hexagonal, stripe,etc.) as well as chemical turbulence have made reaction-diffusion systems the subject of numerous ongoing investigations. In many systems, however, the transport process is not via normal diffusion but rather via anomalous diffusion which can be slower (subdiffusion) or faster (superdiffusion) than normal diffusion. Subdiffusion often occurs in biogels, porous media and polymers, while superdiffusion is typical of some processes in plasmas, semiconductors, surface reactions and many others. Although many aspects of anomalous diffusion have been studied, nonlinear dynamic and pattern formation aspects were the subject of only a very limited number of works. These preliminary studies demonstrate the significance of anomalous diffusion and the necessity for its systematic investigation. The PIs will conduct systematic studies of the effect of anomalous diffusion on the formation of Turing patterns and spatially nonuniform oscillating patterns as well as spiral waves in reaction-diffusion systems, with specific applications to combustion waves, isothermal frontal polymerization waves, and controlled drug delivery.
提案:DMS - 0707445 PI:Matkowsky,Bernard J机构:西北大学标题:模式形成和非线性动力学的反应扩散系统建模的异常扩散,和应用摘要所提出的研究的目标是发展一个理论的模式形成和非线性动力学的反应扩散系统与异常扩散。迄今为止研究的大多数反应扩散系统的一个特征是扩散是正态的,即,随机行走粒子的均方位移与时间的关系是线性的,但在某些情况下,观察到更普遍的关系,其中均方位移表现为时间的幂函数,反应物的扩散是反常的。 如果指数小于1,则扩散过程比正常扩散慢,称为次扩散。相反,如果指数大于1,则比正常情况下更快,称为超扩散。这两种类型的异常扩散已被认为在各种物理,化学,生物,地质和其他过程中发挥重要作用。对于反常扩散的反应-扩散系统的偏微分方程被取代的分数阶偏微分方程系统已来自适当的连续时间随机行走模型在分子水平上。 分数阶方程等价于积分微分方程组,这是我们研究的对象。所提出的研究将涉及一般的反应扩散系统的异常扩散,和具体的应用。对一般反应扩散系统的研究将有助于阐明反常扩散条件下斑图形成和非线性动力学的普遍机制。具体的模型将包括著名的化学动力学模型,如燃烧模型、Oregonator模型、Gray-Scott模型、Giererer-Meinhardt模型、Fitzhugh-Nagumo模型和其他模型,以及燃烧模型、聚合模型和药物控释模型。 反应扩散系统在科学的许多分支中是普遍存在的,几十年来一直吸引着科学家、工程师和数学家的注意。自从图灵的突破性发现表明,在化学反应物种的混合物中的扩散可以导致空间均匀状态的不稳定性,从而导致时空模式的形成,以及Belousov和Zhabotinskii发现振荡化学反应以来,反应扩散系统已经成为远离热力学平衡的系统中时空模式形成的范例之一。螺旋波、空间规则的、具有不同对称性(六边形、条纹等)的静止图案等迷人结构的形成以及化学湍流使得反应扩散系统成为许多正在进行的研究的主题。然而,在许多系统中,输运过程不是通过正常扩散,而是通过异常扩散,其可以比正常扩散慢(亚扩散)或快(超扩散)。 亚扩散经常发生在多孔介质和聚合物中,而超扩散则是等离子体,半导体,表面反应和许多其他过程中的典型过程。虽然许多方面的异常扩散已被研究,非线性动力学和图案形成方面的主题,只有非常有限的工程数量。这些初步研究表明了异常扩散的重要性和对其进行系统研究的必要性。PI将系统研究异常扩散对反应扩散系统中图灵图案、空间非均匀振荡图案以及螺旋波形成的影响,并具体应用于燃烧波、等温前沿聚合波和受控药物输送。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bernard Matkowsky其他文献

Bernard Matkowsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bernard Matkowsky', 18)}}的其他基金

Anomalous diffusion in pattern-forming systems, and applications
图案形成系统中的反常扩散及其应用
  • 批准号:
    1108624
  • 财政年份:
    2011
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Continuing Grant
Effects of Anomalous Diffusion on Pattern Formation and Nonlinear Dynamics in Reaction-Diffusion systems, and Applications
反常扩散对反应扩散系统中图案形成和非线性动力学的影响及其应用
  • 批准号:
    1007925
  • 财政年份:
    2010
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Studies of Explosive Crystallization
合作研究:爆炸结晶研究
  • 批准号:
    0431431
  • 财政年份:
    2004
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Standard Grant
Nonlinear Dynamics and Pattern Formation in Combustion
燃烧中的非线性动力学和模式形成
  • 批准号:
    0072491
  • 财政年份:
    2000
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Continuing Grant
Nonlinear Dynamics and Pattern Formation in Combustion
燃烧中的非线性动力学和模式形成
  • 批准号:
    9705670
  • 财政年份:
    1997
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Continuing Grant
U.S.-Russia Workshop on Combustion
美俄燃烧研讨会
  • 批准号:
    9414370
  • 财政年份:
    1994
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Singular Perturbations in Applied Mathematics: Methods and Applications
数学科学:应用数学中的奇异扰动:方法与应用
  • 批准号:
    8921967
  • 财政年份:
    1990
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Standard Grant
Mathematical Sciences Research Equipment
数学科学研究设备
  • 批准号:
    9003682
  • 财政年份:
    1990
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Standard Grant
Combustion Synthesis: Filtration Combustion
燃烧合成:过滤燃烧
  • 批准号:
    9008624
  • 财政年份:
    1990
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Singular Perturbations in Applied Mathematics: Methods and Applications
数学科学:应用数学中的奇异扰动:方法与应用
  • 批准号:
    8703011
  • 财政年份:
    1987
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Continuing Grant

相似国自然基金

The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Pattern formation and interfacial dynamics in nonlinear partial differential equations
非线性偏微分方程中的图案形成和界面动力学
  • 批准号:
    16K05220
  • 财政年份:
    2016
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Modeling and Analyzing Pattern Formation Mechanisms Derived from Nonlinear Physiological and Neuronal Systems
非线性生理和神经系统衍生的模式形成机制的建模和分析
  • 批准号:
    203241-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and Analyzing Pattern Formation Mechanisms Derived from Nonlinear Physiological and Neuronal Systems
非线性生理和神经系统衍生的模式形成机制的建模和分析
  • 批准号:
    203241-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear dynamics and pattern formation in crystal growth from a highly viscous solution film
高粘性溶液膜晶体生长的非线性动力学和图案形成
  • 批准号:
    26400407
  • 财政年份:
    2014
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear waves and pattern formation in a mean-field cortex model
平均场皮层模型中的非线性波和图案形成
  • 批准号:
    442614-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Nonlinear waves and pattern formation in a mean-field cortex model
平均场皮层模型中的非线性波和图案形成
  • 批准号:
    442614-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Modeling and Analyzing Pattern Formation Mechanisms Derived from Nonlinear Physiological and Neuronal Systems
非线性生理和神经系统衍生的模式形成机制的建模和分析
  • 批准号:
    203241-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Discovery Grants Program - Individual
IDR/Collaborative Research: Experimental and Computational Foundations for Nonlinear Pattern Formation in the Deposition of Elastic Rods
IDR/合作研究:弹性棒沉积中非线性图案形成的实验和计算基础
  • 批准号:
    1129894
  • 财政年份:
    2011
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Standard Grant
IDR/Collaborative Research: Experimental and Computational Foundations for Nonlinear Pattern Formation in the Deposition of Elastic Rods
IDR/合作研究:弹性棒沉积中非线性图案形成的实验和计算基础
  • 批准号:
    1129917
  • 财政年份:
    2011
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Standard Grant
Nonlinear dynamics and pattern formation in extended systems
扩展系统中的非线性动力学和模式形成
  • 批准号:
    298178-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 38.84万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了