Collaborative Research: Wave Computations in Phase-Space
合作研究:相空间波计算
基本信息
- 批准号:0708014
- 负责人:
- 金额:$ 15.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Lead Proposal: DMS - 0707921PI: Demanet, Laurent Institution: Stanford UniversityNon-Lead Proposal: DMS-0708014PI: Ying, Lexing Institution: University of Texas at AustinTitle: Collaborative Research: Wave Computations in Phase-SpaceABSTRACTThe field of seismic imaging is currently facing a major computational challenge, because the capabilities of inversion algorithms grow at a slower pace than the volume of acquired data. Success of inversion typically hinges on the practicality of solving wave or hyperbolic equations, or proper approximations thereof, on a massive computational scale. To this end, the PIs propose to revisit computational wave propagation in smooth media, in two and three space dimensions, in order to bring the complexity down to asymptotically linear in the size of the initial data, up to log factors and reasonable constants. In this low-complexity regime, precomputations involving the Green's function become the main focus of the numerical effort. To this end, the PIs propose to design, implement, test and analyze the following numerical methods: (1) an efficient algorithm for Fourier Integral Operators (FIO), using techniques such as phase-space partitionings, geometric downsamplings, directional interpolation, and low rank matrix approximations via random sampling, (2) an efficient algorithm for linear hyperbolic PDE with smooth coefficients, based on the above algorithm for FIO, and also using techniques such as the phase-flow method for travel times, separation and random samplings of pseudodifferential symbols, and specialquadratures that exploit the microlocal geometry of wave propagation, and (3) an efficient algorithm for Kirchhoff migration in seismic imaging, based on the above algorithm for FIO, and also on a high-dimensional compression technique for the kinematics of the imaging operator. In a separate effort, the PIs will explore more general situations of physical interest such as phase blowups and multipathing, for which new ideas will be required.The proposed research is directly motivated by the need for new, efficient inversion methods in reflection seismology. In turn, improved seismic imaging techniques (1) could help discover new physics and settle existing debates in geophysics (for instance concerning convection phenomena in the Earth's mantle), and (2) could provide a better map of the Earth's upper crust, for industrial exploration purposes. The PIs plan on working closely with seismologists in the later phases of the project, to deliver operational codes and disseminate ideas in the geophysics community. Alternatively, transmission electron microscopy is another curvilinear tomography imaging problem for which the proposed algorithms will provide a fresh outlook towards novel, accurate inversion methods, with applications in biology and medical imaging.
主导提案:DMS - 0707921PI:Demanet, Laurent 机构:斯坦福大学非主导提案:DMS-0708014PI:Ying,Lexing 机构:德克萨斯大学奥斯汀分校标题:协作研究:相空间中的波计算摘要地震成像领域目前面临着重大的计算挑战,因为反演算法的能力 增长速度慢于所获取数据量的增长速度。反演的成功通常取决于在大规模计算规模上求解波动方程或双曲方程或其适当近似的实用性。为此,PI 建议在二维和三维空间维度重新审视光滑介质中的计算波传播,以便将复杂性降低到初始数据大小的渐近线性,直至对数因子和合理的常数。在这种低复杂度的情况下,涉及格林函数的预计算成为数值工作的主要焦点。为此,PI 建议设计、实现、测试和分析以下数值方法:(1) 一种高效的傅里叶积分算子 (FIO) 算法,使用相空间分区、几何下采样、定向插值和通过随机采样的低秩矩阵逼近等技术,(2) 一种针对平滑线性双曲 PDE 的高效算法 系数,基于上述 FIO 算法,并使用诸如走时相流法、伪微分符号的分离和随机采样以及利用波传播的微局域几何的特殊求积等技术,以及 (3) 地震成像中基尔霍夫偏移的有效算法,基于上述算法 FIO,以及用于成像算子运动学的高维压缩技术。在另一项工作中,PI 将探索更普遍的物理兴趣情况,例如相位爆炸和多路径,为此需要新的想法。本项研究的直接动机是反射地震学中对新的、高效的反演方法的需求。反过来,改进的地震成像技术(1)可以帮助发现新的物理学并解决地球物理学中现有的争论(例如有关地幔中的对流现象),(2)可以为工业勘探目的提供更好的地球上地壳地图。 PI 计划在项目的后期阶段与地震学家密切合作,在地球物理学界提供操作规范并传播想法。另外,透射电子显微镜是另一个曲线断层扫描成像问题,所提出的算法将为新颖、精确的反演方法提供新的前景,并应用于生物学和医学成像。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lexing Ying其他文献
On efficient quantum block encoding of pseudo-differential operators
伪微分算子的高效量子块编码
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:6.4
- 作者:
Haoya Li;Hongkang Ni;Lexing Ying - 通讯作者:
Lexing Ying
Quantum Hamiltonian Learning for the Fermi-Hubbard Model
费米-哈伯德模型的量子哈密顿学习
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Hongkang Ni;Haoya Li;Lexing Ying - 通讯作者:
Lexing Ying
Fast Spatial Gaussian Process Maximum Likelihood Estimation via Skeletonization Factorizations
通过骨架分解的快速空间高斯过程最大似然估计
- DOI:
10.1137/17m1116477 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Victor Minden;Anil Damle;Kenneth L. Ho;Lexing Ying - 通讯作者:
Lexing Ying
Multidimensional unstructured sparse recovery via eigenmatrix
通过特征矩阵进行多维非结构化稀疏恢复
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Lexing Ying - 通讯作者:
Lexing Ying
On low-depth algorithms for quantum phase estimation
量子相位估计的低深度算法
- DOI:
10.22331/q-2023-11-06-1165 - 发表时间:
2023 - 期刊:
- 影响因子:6.4
- 作者:
Hongkang Ni;Haoya Li;Lexing Ying - 通讯作者:
Lexing Ying
Lexing Ying的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lexing Ying', 18)}}的其他基金
New Algorithms for Markov Decision Processes and Reinforcement Learning
马尔可夫决策过程和强化学习的新算法
- 批准号:
2208163 - 财政年份:2022
- 资助金额:
$ 15.47万 - 项目类别:
Continuing Grant
Tensor Network Computation: Representations, Algebra, and Applications
张量网络计算:表示、代数和应用
- 批准号:
1818449 - 财政年份:2018
- 资助金额:
$ 15.47万 - 项目类别:
Continuing Grant
Effective Preconditioners for High Frequency Wave Equations
高频波动方程的有效预调节器
- 批准号:
1521830 - 财政年份:2015
- 资助金额:
$ 15.47万 - 项目类别:
Continuing Grant
CDI-Type I: Collaborative Research: High-Dimensional Phase-Space Subdivisions for Seismic Imaging
CDI-Type I:协作研究:地震成像的高维相空间细分
- 批准号:
1327658 - 财政年份:2013
- 资助金额:
$ 15.47万 - 项目类别:
Standard Grant
CAREER: Fast Algorithms for Oscillatory Integrals
职业:振荡积分的快速算法
- 批准号:
1328230 - 财政年份:2013
- 资助金额:
$ 15.47万 - 项目类别:
Standard Grant
CDI-Type I: Collaborative Research:High-dimensional phase-space subdivisions for seismic imaging
CDI-I 型:协作研究:地震成像的高维相空间细分
- 批准号:
1027952 - 财政年份:2010
- 资助金额:
$ 15.47万 - 项目类别:
Standard Grant
CAREER: Fast Algorithms for Oscillatory Integrals
职业:振荡积分的快速算法
- 批准号:
0846501 - 财政年份:2009
- 资助金额:
$ 15.47万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306378 - 财政年份:2024
- 资助金额:
$ 15.47万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
- 批准号:
2337506 - 财政年份:2024
- 资助金额:
$ 15.47万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2423960 - 财政年份:2024
- 资助金额:
$ 15.47万 - 项目类别:
Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306379 - 财政年份:2024
- 资助金额:
$ 15.47万 - 项目类别:
Standard Grant
Collaborative Research: An Empirical Blueprint for the Gravitational-Wave Background
合作研究:引力波背景的经验蓝图
- 批准号:
2414468 - 财政年份:2024
- 资助金额:
$ 15.47万 - 项目类别:
Standard Grant
Collaborative Research: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:使用分层纳米结构动力系统进行二维波动工程
- 批准号:
2337507 - 财政年份:2024
- 资助金额:
$ 15.47万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Compact Binary Formation With Gravitational Wave Observations
合作研究:通过引力波观测了解致密双星形成
- 批准号:
2307147 - 财政年份:2023
- 资助金额:
$ 15.47万 - 项目类别:
Standard Grant
Collaborative Research: Testing General Relativity with Gravitational-Wave Observations
合作研究:用引力波观测检验广义相对论
- 批准号:
2308886 - 财政年份:2023
- 资助金额:
$ 15.47万 - 项目类别:
Continuing Grant
Collaborative Research: Evolution and fate of wind-derived internal wave energy
合作研究:风生内波能的演化和命运
- 批准号:
2319609 - 财政年份:2023
- 资助金额:
$ 15.47万 - 项目类别:
Standard Grant
Collaborative Research: WoU-MMA: Coherent radio and x-ray precursor transients to gravitational wave events: Simulations in general relativity and kinetic theory
合作研究:WoU-MMA:引力波事件的相干射电和 X 射线前兆瞬变:广义相对论和动力学理论的模拟
- 批准号:
2307395 - 财政年份:2023
- 资助金额:
$ 15.47万 - 项目类别:
Standard Grant














{{item.name}}会员




