AMC-SS: Theory and Modeling of Rare Events
AMC-SS:罕见事件的理论和建模
基本信息
- 批准号:0708140
- 负责人:
- 金额:$ 36.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The present proposal focuses on the study of rare events as they arise from real applications in computational chemistry, material sciences or molecular biology (for details on the latter, see the second paragraph below). Examples of such rare events include phenomena as diverse as nucleation events during phase transitions, chemical reactions, conformation changes of biomolecules, or bistable behaviors in genetic switches. The study of these rare events requires going beyond Freidlin-Wentzell theory of large deviations, which in mathematics has been the traditional tool to analyze rare events. It also requires integrating the theory within a computational perspective, which is necessary since traditional numerical tools such as Monte Carlo or direct simulation of SDEs are highly ineffective for rare events. Here the PI proposes to do so by (i) generalizing the theoretical framework of Transition Path Theory (TPT), which allows one to describe the statistical mechanics of rare events in situations when large deviation theory does not apply, and (ii) developing associated numerical algorithms such as the String Method for the effective computation of the various objects in TPT (like the probability density of reactive trajectories, their probability current and flux, and the rate of the reaction).The excitement of using molecular dynamics as a tool to do biology stems for the fact that it would enable us to understand the behavior of biomolecules such as protein, enzymes, ion channels, etc. from the "jiggling and wiggling" of the atoms they are made of (to quote Richard Feynman). This would allow for a much deeper understanding of their function and one that goes beyond what is currently achievable via experiments (in which it is hard or impossible to resolve the actual dynamics of the atoms). But this objective comes with tremendous challenges. While biomolecules are tiny objects from our perspective, they are also huge in that they are typically made of thousands of atoms (hundreds of thousands if one accounts for the molecules of solvent surrounding them). Since these atoms move very fast, the equations of motion governing their evolution must be integrated on the computer using a very small time step--typically of the order of one femtosec (1 femtosec = 1e-15 sec = 0.000000000000001 sec). Every such time step takes some time because it involves updating the position of so many atoms. As a result, it is only possible to simulate directly the motion of a typical biomolecule such as Hemoglobin over a few nanoseconds (1 nanosec = 1e-9 sec = 0.000000001 sec). Such a calculation already takes several days on a large computer. This, however, is a problem because the motion of these large molecules which governs their actual function only arise on a much slower time scale, typically of the order of the microseconds or even more (1 microsec = 1e-6 sec = 0.000001 sec). This is because such motion typically involves reactive events, e.g. large-scale reorganization of the shape of the molecule, which are very rare on the time scale of the molecule (though obviously, they are not on our own daily time scale). The direct simulation of any such reactive event would typically require years of computations, which is neither affordable nor practical. On the other hand, various techniques have been designed recently to bypass this difficulty and describe statistically (rather than on a one to one basis) the reactive events. This proposal is about developing these techniques, first at a theoretical level then by exploiting the theory to design efficient numerical algorithms for the computation of the reactive events which are so important in molecular biology.
本提案侧重于研究在计算化学、材料科学或分子生物学中的实际应用中出现的罕见事件(后者的详细情况见下文第二段)。这种罕见事件的例子包括各种各样的现象,如相变中的成核事件、化学反应、生物分子的构象变化或遗传开关中的双稳态行为。对这些罕见事件的研究需要超越Freidlin-Wentzell的大偏差理论,该理论在数学上一直是分析罕见事件的传统工具。它还需要在计算角度内整合理论,这是必要的,因为传统的数值工具,如蒙特卡洛或直接模拟SDE,对罕见事件非常无效。在这里,PI建议这样做:(I)推广跃迁路径理论(TPT)的理论框架,该理论框架允许在大偏差理论不适用的情况下描述罕见事件的统计机制,以及(Ii)开发相关的数值算法,例如用于有效计算TPT中各种对象(如反应轨迹的概率密度、它们的概率电流和通量以及反应速度)的弦方法。使用分子动力学作为研究生物学的工具令人兴奋,因为它将使我们能够理解生物分子的行为,如蛋白质、酶、离子通道、等等,来自组成它们的原子的“摆动和摆动”(引用理查德·费曼的话)。这将使我们能够更深入地了解它们的功能,并超越目前通过实验(很难或不可能解决原子的实际动力学)所能达到的水平。但这一目标伴随着巨大的挑战。虽然从我们的角度来看,生物分子是微小的物体,但它们也是巨大的,因为它们通常由数千个原子组成(如果考虑到它们周围的溶剂分子,则有数十万个)。由于这些原子移动非常快,控制它们演化的运动方程必须使用非常小的时间步长在计算机上积分--通常是一飞秒的量级(1飞秒=1e-15秒=0.000000000000001秒)。每一个这样的时间步长都需要一些时间,因为它涉及到更新这么多原子的位置。因此,只能直接模拟典型生物分子如血红蛋白在几纳秒内的运动(1纳秒=1e-9秒=0.000000001秒)。在一台大型计算机上,这样的计算已经需要几天时间。然而,这是一个问题,因为这些控制其实际功能的大分子的运动只出现在更慢的时间尺度上,通常是微秒甚至更长的量级(1微秒=1e-6秒=0.000001秒)。这是因为这种运动通常涉及反应事件,例如分子形状的大规模重组,这在分子的时间尺度上是非常罕见的(尽管很明显,它们不在我们自己的日常时间尺度上)。任何此类反应事件的直接模拟通常都需要多年的计算,这既负担不起,也不实用。另一方面,最近已经设计了各种技术来绕过这一困难,并在统计上(而不是在一对一的基础上)描述反应事件。这项建议是关于发展这些技术,首先在理论层面上,然后利用该理论来设计有效的数值算法来计算在分子生物学中如此重要的反应事件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Vanden-Eijnden其他文献
Mapping Co Diffusion Paths in Myoglobin with the Single Sweep Method
- DOI:
10.1016/j.bpj.2009.12.3109 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Luca Maragliano;Grazia Cottone;Giovanni Ciccotti;Eric Vanden-Eijnden - 通讯作者:
Eric Vanden-Eijnden
Force-Clamp Analysis Techniques Give Highest Rank to Stretched Exponential Unfolding Kinetics in Ubiquitin
- DOI:
10.1016/j.bpj.2012.10.022 - 发表时间:
2012-11-21 - 期刊:
- 影响因子:
- 作者:
Herbert Lannon;Eric Vanden-Eijnden;J. Brujic - 通讯作者:
J. Brujic
Kinetics of phase transitions in two dimensional Ising models studied with the string method
- DOI:
10.1007/s10910-008-9376-5 - 发表时间:
2008-05-17 - 期刊:
- 影响因子:2.000
- 作者:
Maddalena Venturoli;Eric Vanden-Eijnden;Giovanni Ciccotti - 通讯作者:
Giovanni Ciccotti
Metastability of the Nonlinear Wave Equation: Insights from Transition State Theory
- DOI:
10.1007/s00332-016-9358-x - 发表时间:
2017-01-03 - 期刊:
- 影响因子:2.600
- 作者:
Katherine A. Newhall;Eric Vanden-Eijnden - 通讯作者:
Eric Vanden-Eijnden
Eric Vanden-Eijnden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Vanden-Eijnden', 18)}}的其他基金
Statistical and Computational Foundations of Deep Generative Models
深度生成模型的统计和计算基础
- 批准号:
2134216 - 财政年份:2021
- 资助金额:
$ 36.67万 - 项目类别:
Continuing Grant
DMS-EPSRC Collaborative Research: Sharp Large Deviation Estimates of Fluctuations in Stochastic Hydrodynamic Systems
DMS-EPSRC 合作研究:随机水动力系统波动的急剧大偏差估计
- 批准号:
2012510 - 财政年份:2020
- 资助金额:
$ 36.67万 - 项目类别:
Standard Grant
Collaborative Research: Computation of instantons in complex nonlinear systems.
合作研究:复杂非线性系统中瞬子的计算。
- 批准号:
1522767 - 财政年份:2016
- 资助金额:
$ 36.67万 - 项目类别:
Standard Grant
Collaborative Research: On-the-fly free energy parameterization in molecular simulations
合作研究:分子模拟中的动态自由能参数化
- 批准号:
1207432 - 财政年份:2012
- 资助金额:
$ 36.67万 - 项目类别:
Standard Grant
Numerical methods for the moving contact line problem
动接触线问题的数值方法
- 批准号:
1114827 - 财政年份:2011
- 资助金额:
$ 36.67万 - 项目类别:
Standard Grant
Workshop on Modern Perspectives in Applied Mathematics; New York City, NY
应用数学现代视角研讨会;
- 批准号:
0904087 - 财政年份:2009
- 资助金额:
$ 36.67万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Methods for the Molecular Simulation of Sensory Mechanotransduction Channels
合作研究:感觉机械传导通道分子模拟的多尺度方法
- 批准号:
0718172 - 财政年份:2007
- 资助金额:
$ 36.67万 - 项目类别:
Standard Grant
CAREER: Transition Pathways in Complex Systems. Theory and Numerical Methods.
职业:复杂系统中的过渡途径。
- 批准号:
0239625 - 财政年份:2003
- 资助金额:
$ 36.67万 - 项目类别:
Standard Grant
Statistical Description of Stochastic Dynamical Systems
随机动力系统的统计描述
- 批准号:
0209959 - 财政年份:2002
- 资助金额:
$ 36.67万 - 项目类别:
Standard Grant
相似国自然基金
SS31肽通过AMPK/SIRT3通路调控氧化磷酸化在脓毒症心肌病中的作用及机制研究
- 批准号:JCZRLH202501261
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
沙眼衣原体II型分泌系统(T2SS)次要假菌毛的鉴定及其分子组装机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
NrtR通过调控T6SS参与溶藻弧菌竞争定
植的分子机制
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
SMARCB1乙酰化修饰调控驱动基因SS18-
SSX1增强子活性影响滑膜肉瘤侵袭转移
的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
铜绿假单胞菌T6SS调控因子TsrF作用机制研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
电针通过 Nrxn3SS4+/Cbln2/GluD1 信号介导的
AMPAR 失活在脊髓损伤修复中的机制研究
- 批准号:Q24H270038
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
鰤鱼诺卡氏菌 VII 型分泌系统(T7SS)在致病
过程中的作用及机制初探
- 批准号:TGN24C190012
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于ICCP-SS双重干预系统的海水海砂型钢混凝土梁柱节点抗震性能与设计
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
不锈钢SS310在布雷顿循环中的环境断裂敏感性和机理研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
新型sRNA-603介导T6SS关键组分ClpV调控变形假单胞菌毒力的分子机制
- 批准号:32373181
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Sample Size calculations for UPDATing clinical prediction models to Ensure their accuracy and fairness in practice (SS-UPDATE)
用于更新临床预测模型的样本量计算,以确保其在实践中的准确性和公平性(SS-UPDATE)
- 批准号:
MR/Z503873/1 - 财政年份:2024
- 资助金额:
$ 36.67万 - 项目类别:
Research Grant
Significance of anti-SS-A antibody in Stevens-Johnson syndrome and toxic epidermal necrolysis
抗SS-A抗体在Stevens-Johnson综合征和中毒性表皮坏死松解症中的意义
- 批准号:
23K15289 - 财政年份:2023
- 资助金额:
$ 36.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conference: Experimental Combustion: Past, Present, and Future -- International Combustion Institute Summer School (CI-SS) 2023
会议:实验燃烧:过去、现在和未来——国际燃烧学院暑期学校(CI-SS)2023
- 批准号:
2312846 - 财政年份:2023
- 资助金额:
$ 36.67万 - 项目类别:
Standard Grant
SS-DSC: Stainless steel-concrete composite beams with stainless-steel demountable shear connectors for sustainable infrastructure
SS-DSC:带有不锈钢可拆卸剪力连接件的不锈钢混凝土组合梁,适用于可持续基础设施
- 批准号:
EP/Y020278/1 - 财政年份:2023
- 资助金额:
$ 36.67万 - 项目类别:
Fellowship
NOIR-SSを用いた淡明細胞型腎癌におけるctDNAの定量と背景因子の解明
使用 NOIR-SS 对透明细胞肾癌的 ctDNA 进行定量并阐明背景因素
- 批准号:
23K08731 - 财政年份:2023
- 资助金额:
$ 36.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Solid-State Battery Interface Design (SS-BID)
固态电池接口设计(SS-BID)
- 批准号:
DP230100429 - 财政年份:2023
- 资助金额:
$ 36.67万 - 项目类别:
Discovery Projects
Development of reflection-mode computed tomography using THz-SS-OCT
使用 THz-SS-OCT 开发反射模式计算机断层扫描
- 批准号:
22K04133 - 财政年份:2022
- 资助金额:
$ 36.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
West Africa Self-Sampling HPV Based Cervical Cancer Control Program (WA-SS-HCCP) for WLWHA: Barriers, challenges, and needs
西非 WLWHA 基于 HPV 的自我采样宫颈癌控制计划 (WA-SS-HCCP):障碍、挑战和需求
- 批准号:
10700092 - 财政年份:2022
- 资助金额:
$ 36.67万 - 项目类别:
West Africa Self-Sampling HPV Based Cervical Cancer Control Program (WA-SS-HCCP) for WLWHA: Barriers, challenges, and needs
西非 WLWHA 基于 HPV 的自我采样宫颈癌控制计划 (WA-SS-HCCP):障碍、挑战和需求
- 批准号:
10541742 - 财政年份:2022
- 资助金额:
$ 36.67万 - 项目类别:
Development of simultaneous N and SS removal system using DHS-USB and BFT
使用 DHS-USB 和 BFT 开发同时 N 和 SS 去除系统
- 批准号:
22K14936 - 财政年份:2022
- 资助金额:
$ 36.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists