Collaborative Research: Applications of CCP estimation to dynamic discrete choice models with unobserved heterogenity
合作研究:CCP 估计在具有不可观测异质性的动态离散选择模型中的应用
基本信息
- 批准号:0721059
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-15 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many important decisions involve balancing present against future. For example, the decision to stay in school requires incurring costs today to reap (often substantial) financial benefits in the future. Similarly, the decision to start smoking may have (perceived) social benefits today, but substantial health costs down the road. Understanding how such dynamic decisions are made is essential in formulating effective social policy. However, formally modeling these decision processes can be extremely complicated, creating a barrier to rigorous analysis and limiting the scope of forward looking policy analysis. The goal of this research project is to decrease these barriers by developing a much simpler, but equally rigorous empirical technique for analyzing dynamic decision processes.The framework developed here builds on an existing empirical methodology, Conditional Choice Probability (CCP) estimation, that provides a computationally tractable method for analyzing dynamic discrete choice problems. CCP methods have not yet been widely used in practice, mainly due to the perception that they are unnecessarily restrictive, requiring the researcher to observe everything about the world that the agents themselves see. This research project demonstrates that this perception is incorrect, generalizing the class of models that can be estimated using CCP methods and providing specific methods for incorporating unobserved heterogeneity. Furthermore, because of the computational simplicity of the estimator, these unobserved variables can persist without being permanent. For example, certain markets may have high demand for particular types of workers but the markets with high demand may change over time. These types of problems have not been estimated in the past because of the computational complexity of the problem. The project illustrates the advantages of the solution method by analyzing how unionization affects the entry, exit, and investment decisions in the supermarket industry. The project pays particular attention to how unionization affects product market competition through the dynamic decisions made by supermarkets.The broader impact of the proposal is to greatly increase the class of problems that can be analyzed from a dynamic perspective. Further, by significantly reducing the technical expertise necessary to engage in research of this type, this project will open up the field to a broader class of researchers and disciplines. For example, by incorporating unobserved variables that transition over time, the algorithm is particularly well suited to applications in dynamic games and models with learning.
许多重要的决策都涉及平衡现在与未来。例如,留在学校的决定需要今天付出成本才能在未来获得(通常是巨大的)经济利益。同样,开始吸烟的决定在今天可能会产生(感知到的)社会效益,但未来会带来巨大的健康成本。了解如何做出此类动态决策对于制定有效的社会政策至关重要。然而,对这些决策过程进行正式建模可能极其复杂,这给严格分析造成了障碍,并限制了前瞻性政策分析的范围。该研究项目的目标是通过开发一种更简单但同样严格的经验技术来分析动态决策过程来减少这些障碍。这里开发的框架建立在现有的经验方法基础上,即条件选择概率(CCP)估计,它为分析动态离散选择问题提供了一种计算上易于处理的方法。 CCP 方法尚未在实践中广泛使用,主要是因为人们认为它们具有不必要的限制,要求研究人员观察代理人自己看到的世界的一切。该研究项目证明了这种看法是不正确的,概括了可以使用 CCP 方法估计的模型类别,并提供了合并未观察到的异质性的具体方法。此外,由于估计器的计算简单性,这些未观察到的变量可以持续存在而不是永久的。例如,某些市场可能对特定类型的工人有很高的需求,但高需求的市场可能会随着时间的推移而发生变化。 由于问题的计算复杂性,过去没有对这些类型的问题进行估计。该项目通过分析工会如何影响超市行业的进入、退出和投资决策,说明了该解决方案的优点。该项目特别关注工会化如何通过超市的动态决策影响产品市场竞争。该提案更广泛的影响是大大增加了可以从动态角度分析的问题类别。此外,通过显着减少从事此类研究所需的技术专业知识,该项目将为更广泛的研究人员和学科开放该领域。例如,通过合并随时间变化的未观察到的变量,该算法特别适合动态游戏和学习模型中的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Arcidiacono其他文献
Estimation of Dynamic Discrete Choice Models in Continuous Time April 28 , 2010
连续时间动态离散选择模型的估计 四月 28 , 2010
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Peter Arcidiacono;Patrick J. Bayer;Jason R. Blevins;Paul B. Ellickson - 通讯作者:
Paul B. Ellickson
Estimation of Dynamic Discrete Choice Models in Continuous Time
连续时间内动态离散选择模型的估计
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Peter Arcidiacono;Patrick J. Bayer;Jason R. Blevins;Paul B. Ellickson - 通讯作者:
Paul B. Ellickson
Neighborhood Change and the Valuation of Urban Amenities: Incorporating Dynamic Behavior into the Hedonic Model
邻里变化和城市便利设施的评估:将动态行为纳入享乐模型
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Kelly C. Bishop;Alvin D. Murphy;Dionissi Aliprantis;Soren Anderson;Peter Arcidiacono;Peter Blair;Leah Brooks;Nick Kuminoff;Dennis Epple;Bob Miller;Aviv Nevo;Christopher Palmer;Monika Piazzesi;Chris Taber - 通讯作者:
Chris Taber
Discrimination in Multi-Phase Systems: Evidence from Child Protection
多阶段系统中的歧视:来自儿童保护的证据
- DOI:
10.1093/qje/qjae007 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
E. J. Baron;Jr Joseph J. Doyle;Natalia Emanuel;Peter Hull;Joseph Ryan;Marcella Alsan;Desmond Ang;Peter Arcidiacono;David Arnold;Bocar Ba;Anthony Bald;Patrick J. Bayer;Peter Blair;Aislinn Bohren;Chris Campos;Eric Chyn;Will Dobbie;Matt Gentzkow;Ezra Goldstein;Felipe Goncalves;Marie;Max Gross - 通讯作者:
Max Gross
Approximating High-dimensional Dynamic Models: Sieve Value Function Iteration Approximating High-dimensional Dynamic Models: Sieve Value Function Iteration
近似高维动态模型:筛值函数迭代 近似高维动态模型:筛值函数迭代
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Peter Arcidiacono;Patrick J. Bayer;Federico A. Bugni;Jonathan James;Vijay Krishna;Peng Sun - 通讯作者:
Peng Sun
Peter Arcidiacono的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Arcidiacono', 18)}}的其他基金
Large State Space Issues in Dynamic Models
动态模型中的大状态空间问题
- 批准号:
1124193 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: IRES Track I: Wireless Federated Fog Computing for Remote Industry 4.0 Applications
合作研究:IRES Track I:用于远程工业 4.0 应用的无线联合雾计算
- 批准号:
2417064 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
- 批准号:
2414185 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403088 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403090 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
- 批准号:
2403399 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403089 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
- 批准号:
2403398 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312872 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




