SDCI HPC: Improvement: Parallel I/O Software Infrastructure for Petascale Systems
SDCI HPC:改进:用于 Petascale 系统的并行 I/O 软件基础设施
基本信息
- 批准号:0724599
- 负责人:
- 金额:$ 152.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technical Merit: This project proposes to address the software problem for petascale parallel machines, and it especially targets for scalable I/O, storage and systems with deep memory hierarchy accesses. In particular,this project proposes to improve, enhance, develop, and deploy robust software infrastructure to provide end-to-end scalable I/O performance that utilizes the understanding of high-level access patterns (?intent?), and uses that information through runtime layers to enable optimizations at different levels. We propose mechanisms that allow different software layers to interact and cooperate with each other to achieve end-to-end performance objectives. Specifically, the objectives of this project, are to develop, improve and deploy (1) scalable software for end-to-end I/O performance optimizations; (2) Parallel netCDF (PnetCDF) enhancements providing statistical functions and data mining functions; (3) PnetCDF software optimizations using non-blocking I/O mechanisms; (4) MPI-IO caching mechanisms to optimize I/O software stackperformance; (5) I/O forwarding and dedicated caching mechanisms important to effectively utilize the structures of upcoming petascale systems; (6) effective benchmarking and testing suites for the I/O stack; (7) an optimization assist tool that, through program analysis, can identify and guide a user to optimize I/O; (8) testing leveraging the mechanisms and tools developed as part of the NMI; and (9) tutorials and tools for helping application scientists incorporate these I/O stack optimizations into their production applications. We also believe that the software and techniques developed in this project will be directly applicable to and useful in other high-level software libraries and formats such as the Hierarchical Data Format (HDF).Broader Impact: We will build upon and leverage our team's collective experience (which includes distribution of widely used and robust software systems for HPC such as ROMIO, MPICH2, PVFS,PnetCDF and NU-Minebench) to distribute software developed in this project for cyberinfrastructure, andtherefore, directly impact the scalability of applications in many domains. Through our team's active participation in multiple infrastructure centers (e.g., teragrid), we will deploy the software on production systems. We will also incorporate the results and lessons from this project into the various tutorials that are presented by our team members in the area of parallel computing, parallel I/O and systems software in most leading conferences in HPC throughout the world. Through this project and utilizing summer internships, wewill provide an opportunity to students to work with application scientists, thereby fostering interdisciplinary collaboration. This project will also support graduate students work towards advanced degrees. PI Choudhary has graduated more than 23 PhDs, many of whom have joined academia and national labs. Multiple PIs in this project have graduated several female and underrepresented PhDs, and we will continue to enhance this tradition. In addition to incorporating the lessons from this project into various tutorials, we will also incorporate them into classroom material both for undergraduate and graduate level courses as we have done in the past. Finally, we have a strong collaboration with industry in the HPC area and we will leverage thatcollaboration to provide the outcomes and results of this project to them.
技术优点:本项目旨在解决千万亿次并行机的软件问题,特别是针对可扩展的I/O、存储和具有深存储层次访问的系统。特别是,该项目建议改进,增强,开发和部署强大的软件基础设施,以提供端到端的可扩展的I/O性能,利用高层访问模式的理解(?意图?),并通过运行时层使用该信息来实现不同级别的优化。我们提出的机制,允许不同的软件层相互作用和相互合作,以实现端到端的性能目标。具体来说,该项目的目标是开发、改进和部署(1)用于端到端I/O性能优化的可扩展软件;(2)提供统计功能和数据挖掘功能的并行netCDF(PnetCDF)增强功能;(3)使用非阻塞I/O机制的PnetCDF软件优化;(4)MPI-IO缓存机制,以优化I/O软件堆栈性能;(5)I/O转发和专用高速缓存机制,其对于有效地利用即将到来的千万亿次系统的结构是重要的;(6)用于I/O栈的有效基准测试和测试套件;(7)优化辅助工具,其通过程序分析可以识别和引导用户优化I/O;(8)利用作为NMI的一部分开发的机制和工具进行测试;(9)帮助应用科学家将这些I/O堆栈优化纳入其生产应用程序的教程和工具。我们还相信,本项目中开发的软件和技术将直接适用于其他高级软件库和格式,如分层数据格式(HDF)。我们将利用我们团队的集体经验(其中包括广泛使用的和强大的HPC软件系统,如ROMIO,MPICH 2,PVFS,PnetCDF和NU-Minebench)分发该项目中为网络基础设施开发的软件,因此,直接影响许多领域应用程序的可扩展性。通过我们的团队积极参与多个基础设施中心(例如,teragrid),我们将在生产系统上部署该软件。我们还将把该项目的成果和经验教训融入到我们的团队成员在世界各地的HPC主要会议上介绍的并行计算、并行I/O和系统软件领域的各种教程中。通过这个项目和利用暑期实习,我们将提供一个机会,学生与应用科学家合作,从而促进跨学科的合作。该项目还将支持研究生攻读高级学位。PI Choudhary已经毕业了超过23个博士学位,其中许多人加入了学术界和国家实验室。在这个项目中的多个PI已经毕业了几个女性和代表性不足的博士学位,我们将继续加强这一传统。除了将这个项目的经验教训纳入各种教程,我们还将把它们纳入课堂材料都为本科和研究生水平的课程,因为我们已经在过去做的。最后,我们在HPC领域与业界有着密切的合作,我们将利用这种合作向他们提供该项目的成果和结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alok Choudhary其他文献
MicroProcSim: A Software for Simulation of Microstructure Evolution
- DOI:
10.1007/s40192-025-00405-6 - 发表时间:
2025-06-23 - 期刊:
- 影响因子:2.500
- 作者:
Md Maruf Billah;Muhammed Nur Talha Kilic;Md Mahmudul Hasan;Zekeriya Ender Eger;Yuwei Mao;Kewei Wang;Alok Choudhary;Ankit Agrawal;Veera Sundararaghavan;Pınar Acar - 通讯作者:
Pınar Acar
Hybrid-LLM-GNN: integrating large language models and graph neural networks for enhanced materials property prediction
混合大语言模型与图神经网络:集成大语言模型和图神经网络以增强材料性能预测
- DOI:
10.1039/d4dd00199k - 发表时间:
2024-12-17 - 期刊:
- 影响因子:5.600
- 作者:
Youjia Li;Vishu Gupta;Muhammed Nur Talha Kilic;Kamal Choudhary;Daniel Wines;Wei-keng Liao;Alok Choudhary;Ankit Agrawal - 通讯作者:
Ankit Agrawal
A model for managing returns in a circular economy context: A case study from the Indian electronics industry
- DOI:
10.1016/j.ijpe.2022.108505 - 发表时间:
2022-07-01 - 期刊:
- 影响因子:10.000
- 作者:
Divya Choudhary;Fahham Hasan Qaiser;Alok Choudhary;Kiran Fernandes - 通讯作者:
Kiran Fernandes
Automated image segmentation for accelerated nanoparticle characterization
- DOI:
10.1038/s41598-025-01337-z - 发表时间:
2025-05-17 - 期刊:
- 影响因子:3.900
- 作者:
Alexandra L. Day;Carolin B. Wahl;Roberto dos Reis;Wei-keng Liao;Youjia Li;Muhammed Nur Talha Kilic;Chad A. Mirkin;Vinayak P. Dravid;Alok Choudhary;Ankit Agrawal - 通讯作者:
Ankit Agrawal
Dys-regulated phosphatidylserine externalization as a cell intrinsic immune escape mechanism in cancer
- DOI:
10.1186/s12964-025-02090-6 - 发表时间:
2025-03-11 - 期刊:
- 影响因子:8.900
- 作者:
Rachael Pulica;Ahmed Aquib;Christopher Varsanyi;Varsha Gadiyar;Ziren Wang;Trevor Frederick;David C. Calianese;Bhumik Patel;Kenneth Vergel de Dios;Victor Poalasin;Mariana S. De Lorenzo;Sergei V. Kotenko;Yi Wu;Aizen Yang;Alok Choudhary;Ganapathy Sriram;Raymond B. Birge - 通讯作者:
Raymond B. Birge
Alok Choudhary的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alok Choudhary', 18)}}的其他基金
EAGER: XAISE: Explainable Artificial Intelligence for Science and Engineering
EAGER:XAISE:科学与工程领域的可解释人工智能
- 批准号:
2331329 - 财政年份:2023
- 资助金额:
$ 152.81万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Scalable Algorithms for Spatio-temporal Data Analysis
SHF:中:协作研究:时空数据分析的可扩展算法
- 批准号:
1409601 - 财政年份:2014
- 资助金额:
$ 152.81万 - 项目类别:
Standard Grant
EAGER: Scalable Big Data Analytics
EAGER:可扩展的大数据分析
- 批准号:
1343639 - 财政年份:2013
- 资助金额:
$ 152.81万 - 项目类别:
Standard Grant
EAGER: Discovering Knowledge from Scientific Research Networks
EAGER:从科学研究网络中发现知识
- 批准号:
1144061 - 财政年份:2011
- 资助金额:
$ 152.81万 - 项目类别:
Standard Grant
Travel Support for Workshop: Reaching Exascale in this Decade to be Co-Located with International Conference on High-Performance Computing (HiPC 2010)
研讨会差旅支持:在这十年内达到百亿亿次规模,与高性能计算国际会议 (HiPC 2010) 同期举办
- 批准号:
1043085 - 财政年份:2010
- 资助金额:
$ 152.81万 - 项目类别:
Standard Grant
Collaborative Research: An Application Driven I/O Optimization Approach for PetaScale Systems and Scientific Discoveries
协作研究:针对 PetaScale 系统和科学发现的应用驱动 I/O 优化方法
- 批准号:
0938000 - 财政年份:2010
- 资助金额:
$ 152.81万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Climate Change: A Data Driven Approach
合作研究:了解气候变化:数据驱动的方法
- 批准号:
1029166 - 财政年份:2010
- 资助金额:
$ 152.81万 - 项目类别:
Continuing Grant
Collaborative Research: CT-M: Hardware Containers for Software Components - Detection and Recovery at the Hardware/Software Interface
合作研究:CT-M:软件组件的硬件容器 - 硬件/软件接口的检测和恢复
- 批准号:
0830927 - 财政年份:2009
- 资助金额:
$ 152.81万 - 项目类别:
Continuing Grant
DC: Medium: Collaborative Research: ELLF: Extensible Language and Library Frameworks for Scalable and Efficient Data-Intensive Applications
DC:媒介:协作研究:ELLF:用于可扩展且高效的数据密集型应用程序的可扩展语言和库框架
- 批准号:
0905205 - 财政年份:2009
- 资助金额:
$ 152.81万 - 项目类别:
Standard Grant
Data- and Analytics Driven Fault-tolerance and Resiliency Strategies for Peta-Scale Systems
数据和分析驱动的千万亿级系统容错和弹性策略
- 批准号:
0956311 - 财政年份:2009
- 资助金额:
$ 152.81万 - 项目类别:
Standard Grant
相似国自然基金
基于智能控制的电动汽车HPC充电站集中冷却及余热利用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
HPC通过TSC1/mTOR/自噬通路调控线粒体能量代谢增加海马CA1区神经元低氧耐受的研究
- 批准号:82360272
- 批准年份:2023
- 资助金额:32.2 万元
- 项目类别:地区科学基金项目
HPC和AI融合工作流在异构计算系统中的性能自动优化技术研究
- 批准号:
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
tDCS调控mPFC-HPC环路改善精神分裂症大鼠模型认知损害的突触可塑性机制
- 批准号:82301689
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
温压耦合作用下G-HPC随机连续损伤机理研究
- 批准号:2023JJ40735
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向异构HPC系统的运行时能效动态优化方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超吸水树脂杂化与纳米改性对海工HPC性能提升的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
HTC集群与HPC集群负载融合的二阶作业调度算法和资源管理研究
- 批准号:11805225
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
取代Dawson结构HPC@TiO2分子印迹可见光催化剂的结构调控与降解PPCPs性能增强
- 批准号:51562016
- 批准年份:2015
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
HPC型煤制备及在COREX气化炉内劣化及调控基础研究
- 批准号:51574023
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411297 - 财政年份:2024
- 资助金额:
$ 152.81万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411298 - 财政年份:2024
- 资助金额:
$ 152.81万 - 项目类别:
Standard Grant
CC* CIRA: Bridging the Digital Chasm HPC for ALL
CC* CIRA:为所有人弥合数字鸿沟 HPC
- 批准号:
2346713 - 财政年份:2024
- 资助金额:
$ 152.81万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411299 - 财政年份:2024
- 资助金额:
$ 152.81万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403088 - 财政年份:2024
- 资助金额:
$ 152.81万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403090 - 财政年份:2024
- 资助金额:
$ 152.81万 - 项目类别:
Standard Grant
CAREER: Heterogeneity-Enriched Communication for Advancing HPC Systems and Applications
职业:丰富异构性的通信以推进 HPC 系统和应用程序
- 批准号:
2340982 - 财政年份:2024
- 资助金额:
$ 152.81万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411296 - 财政年份:2024
- 资助金额:
$ 152.81万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411295 - 财政年份:2024
- 资助金额:
$ 152.81万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403089 - 财政年份:2024
- 资助金额:
$ 152.81万 - 项目类别:
Standard Grant














{{item.name}}会员




