Harnessing of gigantic transmission band-edge resonance in degenerate band-edge crystals

利用简并带边晶体中的巨大传输带边共振

基本信息

项目摘要

ECCS-0725657Ronald Reano, Ohio State University Research Fdn INTELLECTUAL MERITThis research will capitalize on the discovery of the gigantic transmission band-edge resonance in periodic stacks of anisotropic layers. This finding provides a framework to exploit the unique properties of artificial materials and their application towards creating hybrid radio-frequency (RF) and optical devices that require less power to operate than devices currently in existence. Efforts entail the realization of bulk and planar degenerate band-edge crystal via fabrication in multilayer and multi-tone ceramics, development of non-invasive dielectric electro-optic probes to extract the extraordinary internal electric-field within the crystal, and creation of low power hybrid RF/optical devices by integrating electro-optic material into crystals which exploit the gigantic transmission band-edge resonance. Low power RF/optical devices benefit a broad range of applications spanning modulators in optical communications networks, phase shifters in phased array radars, detection elements in hybrid RF/optical sensors, and mixers in RF-Over-Fiber systems.BROADER SOCIETAL AND EDUCATIONAL IMPACTIt is well-recognized that artificial materials will play a crucial role in developing next generation communication systems and sensors. Technological challenges include the realization of greater bandwidth (optics) and greater mobility (RF) with the concurrent need for increased power efficiency (energy conservation). The gigantic transmission band-edge resonance to be harnessed herewith is an essential key in creating a new class of hybrid RF/optical devices that operate at significantly reduced power to benefit telecommunications, computing, diagnostics, and sensors. Research activities and educational goals will be integrated by developing a new RF/optics curriculum at The Ohio State University. Our goals are to (1) engender hybrid and integrative research thinking, (2) encourage interdisciplinary graduate education, (3) involve undergraduates, underrepresented groups and minorities in research, (4) engage industry and promote economic development.
ECCS-0725657罗纳德Reano,俄亥俄州州立大学研究基金会知识产权这项研究将利用发现的巨大传输带边共振周期性堆叠的各向异性层。 这一发现提供了一个框架,以利用人造材料的独特性质及其应用,创造混合射频(RF)和光学设备,需要更少的功率比目前存在的设备运行。 努力需要通过在多层和多色调陶瓷中制造来实现块状和平面简并带边晶体,开发非侵入性电介质电光探针以提取晶体内的异常内部电场,以及通过将电光材料集成到利用巨大传输带边谐振的晶体中来创建低功率混合RF/光学器件。 低功率RF/光学器件的应用范围非常广泛,包括光通信网络中的调制器、相控阵雷达中的移相器、混合RF/光学传感器中的检测元件以及RF-Over-Fiber系统中的混频器。更广泛的社会和教育影响众所周知,人工材料将在开发下一代通信系统和传感器方面发挥至关重要的作用。 技术挑战包括实现更大的带宽(光学)和更大的移动性(RF),同时需要提高功率效率(节能)。 由此利用的巨大传输带边谐振是创建新型混合RF/光学设备的关键,这些设备可以显著降低功率,从而使电信,计算,诊断和传感器受益。 研究活动和教育目标将通过在俄亥俄州州立大学开发新的RF/光学课程来整合。我们的目标是(1)产生混合和综合的研究思维,(2)鼓励跨学科的研究生教育,(3)让本科生,代表性不足的群体和少数民族参与研究,(4)参与工业和促进经济发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ronald Reano其他文献

Ronald Reano的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ronald Reano', 18)}}的其他基金

MRI: Acquisition of a Chemical Mechanical Polishing System for Research and Education
MRI:采购用于研究和教育的化学机械抛光系统
  • 批准号:
    2117605
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Creating dynamic poling of ferroelectric thin films for chip-scale reconfigurable optical systems
为芯片级可重构光学系统创建铁电薄膜的动态极化
  • 批准号:
    1809894
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Creating optical polarimetry on a silicon chip
在硅芯片上创建光学偏振测量
  • 批准号:
    1610797
  • 财政年份:
    2016
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Creating Chip-Scale Mid-Infrared Spectroscopy
创建芯片级中红外光谱
  • 批准号:
    1436414
  • 财政年份:
    2014
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Creating topological integrated optomechanics
创建拓扑集成光力学
  • 批准号:
    1102246
  • 财政年份:
    2011
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
CAREER: Creating a new class of organic-inorganic dispersion engineered RF-optical modulators
职业:创建新型有机-无机色散工程射频光调制器
  • 批准号:
    0954996
  • 财政年份:
    2010
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
ARI-SA: Photonics-based nuclear radiation sensor imaging array for defensive measures against unconventional radiological weapons
ARI-SA:基于光子学的核辐射传感器成像阵列,用于针对非常规放射性武器的防御措施
  • 批准号:
    0736182
  • 财政年份:
    2007
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似海外基金

Development of novel optogenetics tools employing gigantic ion-channel complex
利用巨大离子通道复合体开发新型光遗传学工具
  • 批准号:
    23K18090
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Project 2: Why are mucins so gigantic and is it safe/effective to sever them therapeutically?
项目 2:为什么粘蛋白如此巨大?在治疗上切断它们是否安全/有效?
  • 批准号:
    10684198
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
Collaborative Research: CEDAR: Investigation of Gigantic Jets, Their Ionospheric Effects, and How They Couple the Troposphere and Ionosphere
合作研究:CEDAR:研究巨型喷流、其电离层效应以及它们如何耦合对流层和电离层
  • 批准号:
    2230383
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: CEDAR: Investigation of Gigantic Jets, Their Ionospheric Effects, and How They Couple the Troposphere and Ionosphere
合作研究:CEDAR:研究巨型喷流、其电离层效应以及它们如何耦合对流层和电离层
  • 批准号:
    2230385
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: CEDAR: Investigation of Gigantic Jets, Their Ionospheric Effects, and How They Couple the Troposphere and Ionosphere
合作研究:CEDAR:研究巨型喷流、其电离层效应以及它们如何耦合对流层和电离层
  • 批准号:
    2230384
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Development of ferroelectric mesocrystalline nanocomposites and clarification of their gigantic piezoelectric and dielectric effects mechanism
铁电介晶纳米复合材料的开发及其巨压电和介电效应机制的阐明
  • 批准号:
    21K04832
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design and synthesis of dome-shaped nanocarbon molecules with gigantic curved pi-electron systems
具有巨大弯曲π电子系统的圆顶形纳米碳分子的设计与合成
  • 批准号:
    20K15254
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Theoretical study and materials search on gigantic negative thermal expansion phenomena in correlated electron systems
相关电子系统巨负热膨胀现象的理论研究与材料探索
  • 批准号:
    19K21858
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development and validation of gigantic-earthquake simulator in New Zealand
新西兰特大地震模拟器的开发和验证
  • 批准号:
    18KK0095
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Performance improvement of a future gigantic detector for neutrinos and nucleon-decay searches by a new photo-detection system
通过新的光电探测系统改进未来巨型中微子和核子衰变搜索探测器的性能
  • 批准号:
    18K13559
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了