Modal Identification by Decomposition Methods
通过分解方法进行模态识别
基本信息
- 批准号:0727838
- 负责人:
- 金额:$ 17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This work is in the area of structural vibrations. New methods will be developed for interpreting test data in order to understand structural vibration properties, with potential applications to aerospace, civil, and mechanical systems.The goal of this proposal is to develop decomposition methods for performing experimental modal analysis. The decomposition methods are performed without measured input signals, which broadens their appeal for modal analysis. The work involves the new state-variable modal decomposition (SVMD), the proper orthogonal decomposition (POD) and the smooth orthogonal decomposition (SOD). In the proposed SVMD, a data-based eigenvalue problem is constructed and related to the generalized eigenvalue problem associated with free-vibration solutions of the state-variable formulation of linear multi-degree-of-freedom systems. The eigenvalues lead to estimates of frequencies and modal damping. The eigenvectors lead to estimates of the mode shapes. The interpretation holds for linear systems with multi-modal freeresponses, whether damping is large or small, modal or nonmodal, and without the need of input data. The connection of the decomposition to the state-variable differential equations provides insight into the application under random excitation. This insight carries over to SOD. Also, the POD is developed to accommodate general mass distributions.Decomposition methods are easy, and need no measured inputs, enabling engineers to master the process with very little learning curve, using basic packages of numerical software, such as Matlab. Since measured inputs are not needed, the process will be enabled on flexible structures and also inaccessible processes, for example the vibrations of a bridge under random excitation of traffic or wind. The extension of these tools to random excitation further broadens the applicability, and accommodates, for example, the turbulence loading on an airplane wing in the wind tunnel or during flight. The direct modal damping estimations of the SVMD are applicable to structures with larger damping than most current approaches. The project will support a doctoral student to learn state-variable modeling, random vibration, signal processing, and experimental instrumentation, in addition to course-work learning required in the doctoral program. Under-represented minorities, women, and economically disadvantaged students will be sought through the MSU Engineering Diversity Office. An undergraduate student will assist in setting up, instrumenting and running experiments. The PI will take part in an MSU summer program for middle schoolers, Mathematics Science and Technology (MST), by co-teaching a 'Mechanical Engineering' class.
这项工作是在结构振动领域进行的。为了理解结构的振动特性,将开发新的方法来解释试验数据,潜在地应用于航空航天、民用和机械系统。该提案的目标是开发用于执行实验模态分析的分解方法。分解方法不需要测量输入信号,这扩大了它们对模态分析的吸引力。工作包括新的状态变量模式分解(SVMD)、真正交分解(POD)和光滑正交分解(SOD)。在所提出的SVMD中,构造了一个基于数据的特征值问题,并将其与线性多自由度系统状态变量形式的自由振动解相关的广义特征值问题联系起来。这些特征值导致了频率和模态阻尼的估计。这些特征向量导致了对振型的估计。这种解释适用于具有多模态自由响应的线性系统,无论阻尼值是大是小,是模态还是非模态,并且不需要输入数据。这种分解与状态变量微分方程组之间的联系提供了在随机激励下的应用。这种洞察力延续到了超氧化物歧化酶。另外,POD是为适应一般质量分布而开发的。分解方法简单,不需要测量输入,使工程师能够使用数值软件的基本软件包,如MatLab,以很少的学习曲线掌握这一过程。由于不需要测量输入,因此该过程将在柔性结构和不可访问的过程中启用,例如在交通或风的随机激励下桥梁的振动。将这些工具扩展到随机激励,进一步扩大了适用范围,并考虑了例如飞机机翼在风洞中或飞行过程中的湍流载荷。SVMD的直接模态阻尼法适用于具有比大多数现有方法更大阻尼值的结构。该项目将支持博士生学习状态变量建模、随机振动、信号处理和实验仪器,以及博士课程所要求的课程学习。代表不足的少数民族、妇女和经济困难的学生将通过密歇根州立大学工程多样性办公室进行寻找。本科生将帮助建立,仪器和运行实验。PI将参加密歇根州立大学为中学生举办的数学科学与技术(MST)暑期项目,方法是共同教授一节机械工程课。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Feeny其他文献
Brian Feeny的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Feeny', 18)}}的其他基金
Vertical-Axis Wind Turbine Blade Vibration Modeling for Improved Reliability
垂直轴风力涡轮机叶片振动建模以提高可靠性
- 批准号:
1435126 - 财政年份:2014
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Coupled Blade-Hub Dynamics in Large Horizontal-Axis Wind Turbines
大型水平轴风力发电机中的叶片-轮毂耦合动力学
- 批准号:
1335177 - 财政年份:2013
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
A Positive Effect of Negative Stiffness: Wave Behavior and Energy Management
负刚度的积极影响:波浪行为和能量管理
- 批准号:
1030377 - 财政年份:2010
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Nonlinear Dynamic Loadings and Responses for Wind Turbine Reliability
风力发电机可靠性的非线性动态载荷和响应
- 批准号:
0933292 - 财政年份:2009
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Proper Orthogonal Decomposition as an Experimental Modal Analysis Tool
作为实验模态分析工具的适当正交分解
- 批准号:
0099603 - 财政年份:2001
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
GOALI/IUCP: Nonlinear Dynamic Models of Material Flow in High-Speed Machining
GOALI/IUCP:高速加工中材料流的非线性动态模型
- 批准号:
9800323 - 财政年份:1998
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
CAREER: Developing Tools of Modern Dynamical Systems for Modeling Dry Friction
职业:开发用于模拟干摩擦的现代动力系统工具
- 批准号:
9624347 - 财政年份:1996
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
相似国自然基金
相似海外基金
Isolation and identification of active decomposition volatiles for carrion insects
腐肉昆虫活性分解挥发物的分离与鉴定
- 批准号:
552411-2020 - 财政年份:2020
- 资助金额:
$ 17万 - 项目类别:
University Undergraduate Student Research Awards
Identification and functional elucidation of orphan receptor binding ligands using non-negative tensor decomposition
使用非负张量分解识别和功能阐明孤儿受体结合配体
- 批准号:
19K20406 - 财政年份:2019
- 资助金额:
$ 17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Proposal of plant activity due to decomposition and identification of speckle pattern
通过散斑图案的分解和识别提出植物活动
- 批准号:
17K19309 - 财政年份:2017
- 资助金额:
$ 17万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Identification of decomposition stages using volatile organic compounds (VOCs)
使用挥发性有机化合物 (VOC) 识别分解阶段
- 批准号:
498618-2016 - 财政年份:2016
- 资助金额:
$ 17万 - 项目类别:
University Undergraduate Student Research Awards
Identification of the products of rapid thermal decomposition of cellulose by coherent laser light irradiation
相干激光照射鉴定纤维素快速热分解产物
- 批准号:
25660131 - 财政年份:2013
- 资助金额:
$ 17万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Identification of distributed parameter systems by means of the combination of partial least square with Karhunen Loeve decomposition
偏最小二乘与Karhunen Loeve分解相结合的分布参数系统辨识
- 批准号:
261715-2003 - 财政年份:2007
- 资助金额:
$ 17万 - 项目类别:
Discovery Grants Program - Individual
Identification of distributed parameter systems by means of the combination of partial least square with Karhunen Loeve decomposition
偏最小二乘与Karhunen Loeve分解相结合的分布参数系统辨识
- 批准号:
261715-2003 - 财政年份:2006
- 资助金额:
$ 17万 - 项目类别:
Discovery Grants Program - Individual
Identification of distributed parameter systems by means of the combination of partial least square with Karhunen Loeve decomposition
偏最小二乘与Karhunen Loeve分解相结合的分布参数系统辨识
- 批准号:
261715-2003 - 财政年份:2005
- 资助金额:
$ 17万 - 项目类别:
Discovery Grants Program - Individual
Identification of distributed parameter systems by means of the combination of partial least square with Karhunen Loeve decomposition
偏最小二乘与Karhunen Loeve分解相结合的分布参数系统辨识
- 批准号:
261715-2003 - 财政年份:2004
- 资助金额:
$ 17万 - 项目类别:
Discovery Grants Program - Individual
Identification of distributed parameter systems by means of the combination of partial least square with Karhunen Loeve decomposition
偏最小二乘与Karhunen Loeve分解相结合的分布参数系统辨识
- 批准号:
261715-2003 - 财政年份:2003
- 资助金额:
$ 17万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




