Modal Identification by Decomposition Methods

通过分解方法进行模态识别

基本信息

  • 批准号:
    0727838
  • 负责人:
  • 金额:
    $ 17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

This work is in the area of structural vibrations. New methods will be developed for interpreting test data in order to understand structural vibration properties, with potential applications to aerospace, civil, and mechanical systems.The goal of this proposal is to develop decomposition methods for performing experimental modal analysis. The decomposition methods are performed without measured input signals, which broadens their appeal for modal analysis. The work involves the new state-variable modal decomposition (SVMD), the proper orthogonal decomposition (POD) and the smooth orthogonal decomposition (SOD). In the proposed SVMD, a data-based eigenvalue problem is constructed and related to the generalized eigenvalue problem associated with free-vibration solutions of the state-variable formulation of linear multi-degree-of-freedom systems. The eigenvalues lead to estimates of frequencies and modal damping. The eigenvectors lead to estimates of the mode shapes. The interpretation holds for linear systems with multi-modal freeresponses, whether damping is large or small, modal or nonmodal, and without the need of input data. The connection of the decomposition to the state-variable differential equations provides insight into the application under random excitation. This insight carries over to SOD. Also, the POD is developed to accommodate general mass distributions.Decomposition methods are easy, and need no measured inputs, enabling engineers to master the process with very little learning curve, using basic packages of numerical software, such as Matlab. Since measured inputs are not needed, the process will be enabled on flexible structures and also inaccessible processes, for example the vibrations of a bridge under random excitation of traffic or wind. The extension of these tools to random excitation further broadens the applicability, and accommodates, for example, the turbulence loading on an airplane wing in the wind tunnel or during flight. The direct modal damping estimations of the SVMD are applicable to structures with larger damping than most current approaches. The project will support a doctoral student to learn state-variable modeling, random vibration, signal processing, and experimental instrumentation, in addition to course-work learning required in the doctoral program. Under-represented minorities, women, and economically disadvantaged students will be sought through the MSU Engineering Diversity Office. An undergraduate student will assist in setting up, instrumenting and running experiments. The PI will take part in an MSU summer program for middle schoolers, Mathematics Science and Technology (MST), by co-teaching a 'Mechanical Engineering' class.
这项工作是在结构振动领域。 为了理解结构振动特性,将开发解释试验数据的新方法,其潜在应用于航空航天、民用和机械系统。本提案的目标是开发进行实验模态分析的分解方法。 分解方法在没有测量输入信号的情况下进行,这扩大了它们对模态分析的吸引力。 本文的工作包括新的状态变量模态分解(SVMD)、本征正交分解(POD)和光滑正交分解(SOD)。 在建议的SVMD,基于数据的特征值问题的构造和相关的广义特征值问题与自由振动的状态变量制定的线性多自由度系统的解决方案。特征值导致频率和模态阻尼的估计。 特征向量导致的模式形状的估计。 该解释适用于具有多模态自由响应的线性系统,无论阻尼是大的还是小的,模态的还是非模态的,并且不需要输入数据。 将分解与状态变量微分方程联系起来,可以深入了解随机激励下的应用。这一观点也适用于SOD。 分解方法简单,不需要测量输入,使工程师能够使用基本的数值软件包(如Matlab)掌握过程,学习曲线很小。 由于不需要测量的输入,该过程将在柔性结构和不可访问的过程中启用,例如在交通或风的随机激励下的桥梁振动。 将这些工具扩展到随机激励进一步拓宽了应用范围,并适应例如风洞中或飞行期间飞机机翼上的湍流载荷。 SVMD的直接模态阻尼估计适用于比大多数当前方法更大阻尼的结构。 该项目将支持博士生学习状态变量建模,随机振动,信号处理和实验仪器,除了在博士课程所需的课程工作学习。代表性不足的少数民族,妇女和经济上处于不利地位的学生将通过MSU工程多样性办公室寻求。 一名本科生将协助建立,仪器和运行实验。 PI将参加MSU中学生暑期课程,数学科学与技术(MST),共同教授“机械工程”课程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Feeny其他文献

Brian Feeny的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Feeny', 18)}}的其他基金

Vertical-Axis Wind Turbine Blade Vibration Modeling for Improved Reliability
垂直轴风力涡轮机叶片振动建模以提高可靠性
  • 批准号:
    1435126
  • 财政年份:
    2014
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Coupled Blade-Hub Dynamics in Large Horizontal-Axis Wind Turbines
大型水平轴风力发电机中的叶片-轮毂耦合动力学
  • 批准号:
    1335177
  • 财政年份:
    2013
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
A Positive Effect of Negative Stiffness: Wave Behavior and Energy Management
负刚度的积极影响:波浪行为和能量管理
  • 批准号:
    1030377
  • 财政年份:
    2010
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Nonlinear Dynamic Loadings and Responses for Wind Turbine Reliability
风力发电机可靠性的非线性动态载荷和响应
  • 批准号:
    0933292
  • 财政年份:
    2009
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Proper Orthogonal Decomposition as an Experimental Modal Analysis Tool
作为实验模态分析工具的适当正交分解
  • 批准号:
    0099603
  • 财政年份:
    2001
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
GOALI/IUCP: Nonlinear Dynamic Models of Material Flow in High-Speed Machining
GOALI/IUCP:高速加工中材料流的非线性动态模型
  • 批准号:
    9800323
  • 财政年份:
    1998
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
CAREER: Developing Tools of Modern Dynamical Systems for Modeling Dry Friction
职业:开发用于模拟干摩擦的现代动力系统工具
  • 批准号:
    9624347
  • 财政年份:
    1996
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant

相似国自然基金

相似海外基金

Isolation and identification of active decomposition volatiles for carrion insects
腐肉昆虫活性分解挥发物的分离与鉴定
  • 批准号:
    552411-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 17万
  • 项目类别:
    University Undergraduate Student Research Awards
Identification and functional elucidation of orphan receptor binding ligands using non-negative tensor decomposition
使用非负张量分解识别和功能阐明孤儿受体结合配体
  • 批准号:
    19K20406
  • 财政年份:
    2019
  • 资助金额:
    $ 17万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Proposal of plant activity due to decomposition and identification of speckle pattern
通过散斑图案的分解和识别提出植物活动
  • 批准号:
    17K19309
  • 财政年份:
    2017
  • 资助金额:
    $ 17万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Identification of decomposition stages using volatile organic compounds (VOCs)
使用挥发性有机化合物 (VOC) 识别分解阶段
  • 批准号:
    498618-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 17万
  • 项目类别:
    University Undergraduate Student Research Awards
Identification of the products of rapid thermal decomposition of cellulose by coherent laser light irradiation
相干激光照射鉴定纤维素快速热分解产物
  • 批准号:
    25660131
  • 财政年份:
    2013
  • 资助金额:
    $ 17万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Identification of distributed parameter systems by means of the combination of partial least square with Karhunen Loeve decomposition
偏最小二乘与Karhunen Loeve分解相结合的分布参数系统辨识
  • 批准号:
    261715-2003
  • 财政年份:
    2007
  • 资助金额:
    $ 17万
  • 项目类别:
    Discovery Grants Program - Individual
Identification of distributed parameter systems by means of the combination of partial least square with Karhunen Loeve decomposition
偏最小二乘与Karhunen Loeve分解相结合的分布参数系统辨识
  • 批准号:
    261715-2003
  • 财政年份:
    2006
  • 资助金额:
    $ 17万
  • 项目类别:
    Discovery Grants Program - Individual
Identification of distributed parameter systems by means of the combination of partial least square with Karhunen Loeve decomposition
偏最小二乘与Karhunen Loeve分解相结合的分布参数系统辨识
  • 批准号:
    261715-2003
  • 财政年份:
    2005
  • 资助金额:
    $ 17万
  • 项目类别:
    Discovery Grants Program - Individual
Identification of distributed parameter systems by means of the combination of partial least square with Karhunen Loeve decomposition
偏最小二乘与Karhunen Loeve分解相结合的分布参数系统辨识
  • 批准号:
    261715-2003
  • 财政年份:
    2004
  • 资助金额:
    $ 17万
  • 项目类别:
    Discovery Grants Program - Individual
Identification of distributed parameter systems by means of the combination of partial least square with Karhunen Loeve decomposition
偏最小二乘与Karhunen Loeve分解相结合的分布参数系统辨识
  • 批准号:
    261715-2003
  • 财政年份:
    2003
  • 资助金额:
    $ 17万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了