Numerical Computing and Optimization in Developing Cancer Prognostic Systems
开发癌症预后系统中的数值计算和优化
基本信息
- 批准号:0729080
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-10-01 至 2011-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The practice of medicine involves the science of prediction. Prediction depends on clinical or laboratory variables or factors that are linked to outcome. The most common predictors in cancer medicine are the three variables: tumor size, regional lymph node status, and distant metastasis. The three variables are combined in a bin model to form the TNM Staging system, which is a major tool used to predict the outcome of cancer patients and guide therapy. However, the TNM system has only three variables. Therefore, its predictive accuracy is limited. This research addresses issues of numerical computing and optimization in developing expanded cancer prognostic systems that can integrate multiple variables. Two sets of closely related tasks will be investigated, and they represent two major aspects of the intellectual merit of the study. One task is focused on how censored survival times and different types of variables are integrated into a clustering framework that works for a large volume of cancer patient data. Another task is to use the developed cluster analysis to establish prognostic systems, which will provide a more accurate prediction of outcome by taking multiple prognostic factors into account. The broader impact of this research includes many aspects. It will have a direct impact on future staging and classification of cancer patients. The work has general applications and can be adapted to studies of any non-cancer health problems. The investigator's study is expected to make significant contributions to advances in medicine. The research will also have an educational impact.
医学实践涉及预测科学。预测取决于临床或实验室变量或与结果相关的因素。肿瘤医学中最常见的预测因子是三个变量:肿瘤大小、区域淋巴结状态和远处转移。这三个变量在bin模型中组合形成TNM分期系统,这是用于预测癌症患者结果和指导治疗的主要工具。然而,TNM系统只有三个变量。因此,它的预测精度是有限的。这项研究解决了在开发扩展的癌症预后系统,可以整合多个变量的数值计算和优化的问题。两组密切相关的任务将被调查,他们代表了两个主要方面的研究知识价值。 一个任务是集中在如何审查生存时间和不同类型的变量被整合到一个聚类框架,适用于大量的癌症患者数据。另一个任务是使用开发的聚类分析建立预后系统,这将提供一个更准确的预测结果,考虑到多个预后因素。这项研究的广泛影响包括许多方面。它将对未来癌症患者的分期和分类产生直接影响。这项工作具有普遍的应用,可以适用于任何非癌症健康问题的研究。研究人员的研究有望对医学的进步做出重大贡献。这项研究还将产生教育影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dechang Chen其他文献
Oblique Derivative Problems for Nonlinear Parabolic Equations of Second Order in High Dimensional Domains
高维域二阶非线性抛物型方程的斜导问题
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
G. Wen;Yan;Dechang Chen - 通讯作者:
Dechang Chen
An integrated system for class prediction using gene expression profiling
使用基因表达谱进行类别预测的集成系统
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Dechang Chen;D. Hua;Zhenqiu Liu;Zhi - 通讯作者:
Zhi
An Algorithm That Integrates Any Combination and Number of Prognostic Factors and Calculates Survival: A Lung Cancer Demonstration
- DOI:
10.1378/chest.10560 - 发表时间:
2010-10-01 - 期刊:
- 影响因子:
- 作者:
Donald E. Henson;Arnold M. Schwartz;Dechang Chen;Roshni Patel;Xiuzhen Cheng;Joyce Hsiao - 通讯作者:
Joyce Hsiao
Correction: Class Prediction and Feature Selection with Linear Optimization for Metagenomic Count Data
修正:宏基因组计数数据的类别预测和特征选择与线性优化
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3.7
- 作者:
Zhenqiu Liu;Dechang Chen;Li Sheng;Amy Y. Liu - 通讯作者:
Amy Y. Liu
Using Machine Learning to Expand the Ann Arbor Staging System for Hodgkin and Non-Hodgkin Lymphoma
使用机器学习扩展安娜堡霍奇金和非霍奇金淋巴瘤分期系统
- DOI:
10.3390/biomedinformatics3030035 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Huan Wang;Zhenqiu Liu;Julie Yang;Li Sheng;Dechang Chen - 通讯作者:
Dechang Chen
Dechang Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dechang Chen', 18)}}的其他基金
Collaborative Research: Multi-Input Multi-Output (MIMO) Aware Cooperative Dynamic Spectrum Access
协作研究:多输入多输出(MIMO)感知协作动态频谱接入
- 批准号:
1443916 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
NeTS: Medium: Collaborative Research: Opportunistic and Compressive Sensing in Wireless Sensor Networks
NeTS:媒介:协作研究:无线传感器网络中的机会和压缩感知
- 批准号:
0964060 - 财政年份:2010
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: NEDG: Throughput Optimization in Wireless Mesh Networks
合作研究:NEDG:无线网状网络的吞吐量优化
- 批准号:
0831939 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
SD Class Prediction by Gene Expression Profiles
通过基因表达谱进行 SD 类别预测
- 批准号:
0311252 - 财政年份:2003
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
ExpandQISE: Track 1: Collaborative Optimization and Management for Iterative and Parallel Quantum Computing
ExpandQISE:轨道 1:迭代和并行量子计算的协作优化和管理
- 批准号:
2329020 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CPS: Small: Infusing Quantum Computing, Decomposition, and Learning for Addressing Cyber-Physical Systems Optimization Challenges
CPS:小型:融合量子计算、分解和学习来应对网络物理系统优化挑战
- 批准号:
2312086 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Equipment: MRI: Track 1 Acquisition of a GPU-Accelerated Computing Cluster for Advanced Optimization and Design in Multidisciplinary Research and Education
设备:MRI:Track 1 获取 GPU 加速计算集群,用于多学科研究和教育中的高级优化和设计
- 批准号:
2320649 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
DESC: Type I: Dynamic Optimization for Leaps in Sustainability-Centric Computing System Design
DESC:类型 I:以可持续发展为中心的计算系统设计飞跃的动态优化
- 批准号:
2324707 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Encoded computing for efficient and robust large-scale distributed optimization
用于高效、稳健的大规模分布式优化的编码计算
- 批准号:
RGPIN-2019-05828 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Integrated development of quantum annealing optimization into an edge computing platform
将量子退火优化集成开发到边缘计算平台
- 批准号:
22H03585 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Geometry Optimization for Classical and Quantum Computing of Molecule Predictions
分子预测的经典和量子计算的几何优化
- 批准号:
572668-2022 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
University Undergraduate Student Research Awards
Efficient computing systems for deep learning and combinatorial optimization
用于深度学习和组合优化的高效计算系统
- 批准号:
552712-2020 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Alliance Grants
Realistic fault modelling to enable optimization of low power IoT and Cognitive fault-tolerant computing systems
现实故障建模可优化低功耗物联网和认知容错计算系统
- 批准号:
EP/T026022/1 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Research Grant