Synthesis and Characterization of Nanoscale Transition Metal Phosphates as a New Class of Electrocatalysts

新型电催化剂纳米级过渡金属磷酸盐的合成与表征

基本信息

  • 批准号:
    0731132
  • 负责人:
  • 金额:
    $ 29.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

0731132 Xu, Jun John This work focuses on synthesis and characterization of nanoscale transition metal phosphates as a new class of non-noble-metal electrocatalysts for the electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The PI's laboratory recently discovered that certain transition metal phosphates exhibit excellent catalytic activities for ORR and/or OER, and some of them are capable of effectively catalyzing both ORR and OER and hence are promising bi-functional oxygen electrocatalysts. The research will build upon the initial discovery and endeavor to (1) synthesize nanoscale transition metal phosphates as a new class of non-noble-metal electrocatalysts for ORR and OER; (2) investigate the intrinsic catalytic activity and structure-property relationships of the nanoscale catalysts; and (3) probe their catalytic mechanisms using in-situ synchrotron X-ray Absorption Fine Structure (XAFS) techniques. Innovative synthesis techniques will be developed to synthesize transition metal phosphate catalysts of particle size down to a few nanometers. Judging from preliminary results, such nanoscale catalysts may give rise to rather extraordinary catalytic activities for ORR and OER. They would constitute excellent systems for probing catalytic mechanisms and expanding our understanding, and eventual use, of nanoscale non-noble-metal electrocatalysts for these reactions. Their catalytic properties and ORR and OER kinetics on them will be investigated with electrochemical techniques, and their atomic, electronic and surface structures will be investigated with XAFS techniques and correlated with catalytic properties. In-situ XAFS methods will be designed to probe their catalytic mechanisms and stability and durability issues under conditions mimicking real-operating conditions for ORR and OER in fuel cells and water electrolyzers. The intellectual merits of the study are the following. It promises to give rise to a new class of highly active nanoscale non-noble-metal electrocatalysts for ORR and OER, and advance our fundamental understanding of catalytic mechanisms and structure-property relationship of non-noble-metal electrocatalysts for these fundamentally and technologically important reactions. It also promises to contribute to the development of innovative synthesis methods for nanoscale electrocatalysts and novel in-situ characterization techniques. The broader impacts of the study are the following. The new class of nanoscale electrocatalysts could find important applications in alkaline fuel cells, water electrolysis cells, metal-air batteries and electrochemical oxygen sensors. They could especially be of value to the development of the so-called hydrogen economy, as inexpensive and viable non-noble-metal electrocatalysts for water electrolysis to produce hydrogen and for fuel cells to utilize hydrogen are among the most desirable materials to potentially enable the hydrogen economy. The study will further enhance collaboration between the PI and his institution, Rutgers University, and the senior collaborator, Dr. Mahalingam Balasubramanian, and his institution, Argonne National Laboratory. Students involved in the research will be able to utilize the state-of-the-art instrumentation at ANL and their education will be enhanced and enriched with experience at both university and national lab settings. The proposed study will offer excellent opportunities for participation by women and individuals from underrepresented groups. Moreover, the PI will invite local high school students to visit and participate in the research. The findings of the research will be incorporated into teaching materials for two new interdisciplinary courses that the PI has introduced at Rutgers University. Synthesis, physical and electrochemical characterization and studies of catalytic properties will be carried out in the PI's laboratory at Rutgers University. XAFS investigations of atomic, electronic and surface structures and molecular-level catalytic mechanisms will be carried out at the Advanced Photon Source (APS) of the Argonne National Laboratory, through collaboration between the PI and Dr. Balasubramanian, who is a beamline scientist at the APS with extensive expertise in XAFS methods and employing them to study electrochemical materials. The PI and Dr. Balasubramanian have had highly rewarding scientific collaboration in the past few years. The participation by Dr. Balasubramanian, who is fully funded through the APS, leverages the proposed effort both scientifically and financially.
0731132 Xu,Jun John这项工作的重点是合成和表征纳米过渡金属磷酸盐作为一类新的非贵金属电催化剂用于电化学氧还原反应(ORR)和析氧反应(OER)。PI实验室最近发现,某些过渡金属磷酸盐对ORR和/或OER表现出优异的催化活性,其中一些能够有效地催化ORR和OER,因此是有前途的双功能氧电催化剂。该研究将建立在最初的发现和奋进(1)合成纳米过渡金属磷酸盐作为一类新的非贵金属电催化剂的ORR和OER;(2)研究纳米催化剂的内在催化活性和结构-性能关系;(3)使用原位同步辐射X射线吸收精细结构(XAFS)技术探索其催化机理。将开发创新的合成技术,以合成粒径小至几纳米的过渡金属磷酸盐催化剂。从初步结果来看,这种纳米催化剂可能会对ORR和OER产生相当出色的催化活性。它们将构成探测催化机制和扩大我们的理解,并最终使用这些反应的纳米级非贵金属电催化剂的优秀系统。用电化学方法研究了它们的催化性能及其ORR和OER动力学,用XAFS技术研究了它们的原子、电子和表面结构,并与催化性能进行了关联。原位XAFS方法将被设计成在模拟燃料电池和水电解槽中ORR和OER的真实操作条件下探测其催化机制以及稳定性和耐久性问题。这项研究的知识价值如下。它有望产生一类新的高活性纳米非贵金属电催化剂的ORR和OER,并推进我们的催化机理和非贵金属电催化剂的结构与性能的关系,这些根本和技术上重要的反应的基本理解。它还有望为纳米级电催化剂的创新合成方法和新型原位表征技术的发展做出贡献。这项研究的广泛影响如下。这种新型的纳米电催化剂在碱性燃料电池、水电解电池、金属-空气电池和电化学氧传感器等领域有着重要的应用前景。它们可能对所谓的氢经济的发展特别有价值,因为用于水电解以产生氢和用于燃料电池以利用氢的廉价且可行的非贵金属电催化剂是可能实现氢经济的最理想的材料之一。该研究将进一步加强PI及其所在机构罗格斯大学与高级合作者Mahalingam Balasubramanian博士及其所在机构阿贡国家实验室之间的合作。参与研究的学生将能够利用ANL最先进的仪器,他们的教育将得到加强,并在大学和国家实验室环境中获得丰富的经验。拟议的研究将为妇女和代表性不足群体的个人提供极好的参与机会。此外,PI将邀请当地高中学生参观并参与研究。研究结果将被纳入两个新的跨学科课程的教材,PI已在罗格斯大学推出。合成、物理和电化学表征以及催化性能的研究将在罗格斯大学的PI实验室进行。XAFS对原子、电子和表面结构以及分子级催化机制的研究将在阿贡国家实验室的高级光子源(APS)进行,通过PI和Balasubramanian博士之间的合作,Balasubramanian博士是APS的光束线科学家,在XAFS方法方面具有广泛的专业知识,并利用它们研究电化学材料。PI和Balasubramanian博士在过去几年中进行了非常有益的科学合作。Balasubramanian博士的参与,完全由APS资助,在科学和财政上都利用了拟议的努力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jun John Xu其他文献

Jun John Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

ERI: Molecular-level Characterization of Water-in-Salt Electric Double-Layer Capacitors: Nanoscale Thermal Effects on Differential Capacitance
ERI:盐包水双电层电容器的分子级表征:微分电容的纳米级热效应
  • 批准号:
    2347562
  • 财政年份:
    2024
  • 资助金额:
    $ 29.85万
  • 项目类别:
    Standard Grant
Shining Light on Metal Halide Perovskite Stability with Nanoscale Optical Characterization
通过纳米级光学表征揭示金属卤化物钙钛矿的稳定性
  • 批准号:
    EP/X014673/1
  • 财政年份:
    2023
  • 资助金额:
    $ 29.85万
  • 项目类别:
    Research Grant
Nanoscale characterization of high-pressure superconductors using diamond quantum sensing
使用金刚石量子传感对高压超导体进行纳米级表征
  • 批准号:
    23H01835
  • 财政年份:
    2023
  • 资助金额:
    $ 29.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Characterization of the role of dimensionality in confined spaces for controlled reactivity at the nanoscale
表征尺寸在有限空间中对纳米级受控反应的作用
  • 批准号:
    DDG-2022-00009
  • 财政年份:
    2022
  • 资助金额:
    $ 29.85万
  • 项目类别:
    Discovery Development Grant
Design and in situ Characterization of High-Surface Area Metallic and Bimetallic Nanoscale Catalysts
高比表面积金属和双金属纳米催化剂的设计和原位表征
  • 批准号:
    RGPIN-2020-05418
  • 财政年份:
    2022
  • 资助金额:
    $ 29.85万
  • 项目类别:
    Discovery Grants Program - Individual
Nanoscale Characterization and Aim-Specific Design of Amorphous Materials
非晶材料的纳米级表征和特定目标设计
  • 批准号:
    RGPIN-2021-02544
  • 财政年份:
    2022
  • 资助金额:
    $ 29.85万
  • 项目类别:
    Discovery Grants Program - Individual
Design and in situ Characterization of High-Surface Area Metallic and Bimetallic Nanoscale Catalysts
高比表面积金属和双金属纳米催化剂的设计和原位表征
  • 批准号:
    RGPIN-2020-05418
  • 财政年份:
    2021
  • 资助金额:
    $ 29.85万
  • 项目类别:
    Discovery Grants Program - Individual
Nanoscale Characterization and Aim-Specific Design of Amorphous Materials
非晶材料的纳米级表征和特定目标设计
  • 批准号:
    RGPIN-2021-02544
  • 财政年份:
    2021
  • 资助金额:
    $ 29.85万
  • 项目类别:
    Discovery Grants Program - Individual
Nanoscale Characterization and Aim-Specific Design of Amorphous Materials
非晶材料的纳米级表征和特定目标设计
  • 批准号:
    DGECR-2021-00044
  • 财政年份:
    2021
  • 资助金额:
    $ 29.85万
  • 项目类别:
    Discovery Launch Supplement
Nanoscale characterization of mixed-layer chlorite minerals formation
混合层绿泥石矿物形成的纳米级表征
  • 批准号:
    20K14564
  • 财政年份:
    2020
  • 资助金额:
    $ 29.85万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了