Cosmology and Effective Field Theory in Warped Extra Dimension
扭曲额外维度中的宇宙学和有效场论
基本信息
- 批准号:0738057
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-01 至 2009-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
At the intersection of particle theory and cosmology lie fundamental questions. Why is gravity so different from other fundamental forces? Why is it so weak (the hierarchy problem)? What is the universe's dark energy? What drives inflation, smoothing the universe while seeding structure formation? String and M theories require extra spatial dimensions: how could they explain our perceived 3D universe? Recent work on this last question, extra dimension, illuminates all the others. In this project, the PI investigates a class of extra dimensional models: those where extra dimensions warp, or curve, around a 3-brane ? a 3D sub-universe trapping ordinary matter. Such branes are predicted by string and M theory; they warp space-time, due to general relativity; and their warp renders both gravity and particle interactions effectively 3D. The PI's work calibrates the warped particle interactions, using extra-dimensional field theory. Braneworlds thus predict a well-specified 3D universe, from one of higher dimension. Furthermore, they provide a dynamic means of dimensional reduction: a phase transition twists some field in the extra dimensions, spontaneously confining both gravity and ordinary matter, due to a massive 3-brane formed at the twisting defect?s core.
在粒子理论和宇宙学的交叉点上,存在着基本的问题。为什么重力与其他基本力如此不同?为什么它如此薄弱(等级问题)?宇宙的暗能量是什么?是什么推动了通货膨胀,在平滑宇宙的同时播下了结构形成的种子?弦理论和M理论需要额外的空间维度:它们如何解释我们所感知的3D宇宙?最近关于最后一个问题--额外维度--的研究,照亮了所有其他问题。在这个项目中,PI研究了一类额外维度的模型:那些额外维度围绕3-膜扭曲或曲线的模型?一个3D子宇宙困住了普通物质。这种薄膜是由弦和M理论预测的;由于广义相对论,它们扭曲了时空;它们的扭曲使引力和粒子的相互作用都有效地实现了3D。PI的工作使用额外维场理论来校准扭曲的粒子相互作用。因此,电影世界从一个更高的维度预测了一个明确规定的3D宇宙。此外,它们还提供了一种动态降维的方法:由于在扭曲的缺陷--S核上形成了一个巨大的3-膜,相变扭曲了额外维度中的某些场,自发地限制了引力和普通物质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katherine Benson其他文献
THE EPIDEMIOLOGY OF CLUSTERED RISK FACTORS COMPATIBLE WITH METABOLIC SYNDROME IN HAW AI'I A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAW AI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PUBLIC HEALTH
HAW AII 中与代谢综合征相容的聚集性危险因素的流行病学,部分满足公共卫生博士学位要求,提交给 HAW AII 大学研究生部的论文
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
A. Grandinetti;Eric HUlwitz;J. Maddock;J. Kadohiro;L. Irvin;Katherine Benson - 通讯作者:
Katherine Benson
O31: Risk allele evidence curation, classification, and reporting: Recommendations from the ClinGen Low Penetrance/Risk Allele Working Group*
- DOI:
10.1016/j.gimo.2023.100457 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:
- 作者:
Matthew Lebo;Marcie Steeves;Katherine Benson;Laura Conlin;Mythily Ganapathi;Vaidehi Jobanputra;Minjie Luo;Deqiong Ma;Kelly McGoldrick;Blake Palculict;Heidi Rehm;Panagiotis Sergouniotis;Samantha Schilit;Pinar Bayrak-Toydemir;Tatiana Tvrdik;Nicholas Watkins;Lauren Zec;Wenying Zhang Zhang;Ryan Schmidt - 通讯作者:
Ryan Schmidt
Effect of a multi-component palliative care intervention on goals of care discussions for critical patients in the emergency department
- DOI:
10.1007/s11739-025-04048-5 - 发表时间:
2025-07-23 - 期刊:
- 影响因子:3.800
- 作者:
Julia Murray;Zacharia Grami;Katherine Benson;Christopher Hritz;Samantha Lawson;Corita Reilley Grudzen;Allison Cuthel;Lauren Talanda-Fath Southerland - 通讯作者:
Lauren Talanda-Fath Southerland
Katherine Benson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katherine Benson', 18)}}的其他基金
Cosmology and Effective Field Theory in Warped Extra Dimension
扭曲额外维度中的宇宙学和有效场论
- 批准号:
0457140 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Continuing Grant
The Cosmology of Symmetry-Changing Phase Transitions
对称变化相变的宇宙学
- 批准号:
9631182 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Integrating Hamiltonian Effective Field Theory with Lattice QCD and Experimental Results to study Heavy Exotic Hadron Spectroscopy
哈密顿有效场论与晶格 QCD 和实验结果相结合,研究重奇异强子谱
- 批准号:
24K17055 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effective field theory and Physics Beyond the Standard Model
超越标准模型的有效场论和物理学
- 批准号:
2883677 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Direct Dark Matter searches in Effective Field Theory framework and Neutron Background suppression in LZ experiment
有效场论框架中的直接暗物质搜索和 LZ 实验中的中子背景抑制
- 批准号:
2888644 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Postdoctoral Fellowship: MPS-Ascend: "Effective Field Theory Approach to Nuclear Structure for Next Generation of High-Energy Scattering Experiments"
博士后奖学金:MPS-Ascend:“下一代高能散射实验核结构的有效场论方法”
- 批准号:
2316701 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship Award
Maximising the new physics reach of the LHC through Effective Field Theories
通过有效场论最大化大型强子对撞机的新物理范围
- 批准号:
ST/X004155/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship
Higher-order corrections for effective field theories
有效场论的高阶修正
- 批准号:
2876651 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
String Compactifications: From Geometry to Effective Field Theory
弦紧化:从几何到有效场论
- 批准号:
2310588 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
The algebraic analysis of evanescent operators in effective field theory and their asymptotic behavior
有效场论中倏逝算子的代数分析及其渐近行为
- 批准号:
22KJ1072 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Nuclear Structure and Reactions from Effective Field Theory
有效场论的核结构和反应
- 批准号:
2209184 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Working towards an effective field theory of neural computation
致力于神经计算的有效场论
- 批准号:
545841-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral