2008 Workshop on Bayesian Model Selection and Objective Methods
2008年贝叶斯模型选择和客观方法研讨会
基本信息
- 批准号:0742079
- 负责人:
- 金额:$ 1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-12-01 至 2008-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Model selection in the frequentist setting is a well developed field. In the Bayesian framework, in principle, model selection is very simple. Prior probability distributions are used to describe the uncertainty surrounding all unknowns, including models being considered and the parameters for these models. After observing the data, the posterior distribution provides a coherent post data summary of the remaining uncertainty which is relevant for model selection. However, the practical implementation of this approach is not straightforward, and involves issues such as choice of priors, interpretability, and computational feasibility. In this workshop, twelve distinguished individuals who work in Bayesian model selection present their work in a number of different areas, including determination of good objective priors, assessment of various information criteria (AIC, BIC, RIC), methods of calculation of Bayes factors, and Markov chain Monte Carlo. A number of young researchers participate in the workshop and present their work in poster sessions.Variable selection is an important and pervasive problem in scientific and medical research. A few important variables are to be selected from many candidates and used for understanding, prediction and decision making. Historically, variable selection has been carried out in a frequentist setting. However, Bayesian approaches offer important advantages. In broad terms, they give a coherent way of dealing with the distribution of the future response of an individual for whom the predictor variables are now known. Recent advances in both computing power and statistical methodology have greatly enhanced the feasibility of Bayesian approaches to regression and variable selection. The workshop provides an excellent opportunity to discuss the many recent significant developments in Bayesian model selection and objective methods; to discuss what has been found to work and what does not; and to identify important problems and new research directions.
频域环境下的模型选择是一个发展很好的领域。在贝叶斯框架中,原则上,模型选择非常简单。先验概率分布用于描述围绕所有未知数的不确定性,包括正在考虑的模型和这些模型的参数。在观察数据之后,后验分布提供了与模型选择相关的剩余不确定性的一致后验数据汇总。然而,这种方法的实际实现并不简单,而且涉及到诸如先验选择、可解释性和计算可行性等问题。在这次研讨会上,12位致力于贝叶斯模型选择的杰出人士介绍了他们在许多不同领域的工作,包括良好客观先验的确定,各种信息标准(AIC,BIC,RIC)的评估,贝叶斯因子的计算方法,以及马尔可夫链蒙特卡罗。一些年轻的研究人员参加了研讨会,并在海报上展示了他们的工作。变量选择是科学和医学研究中一个重要而普遍的问题。一些重要的变量将从许多候选人中挑选出来,用于理解、预测和决策。在历史上,变量选择一直是在频率设置中进行的。然而,贝叶斯方法提供了重要的优势。广义地说,它们给出了一种连贯的方法来处理预测变量现在已知的个人未来反应的分布。最近在计算能力和统计方法方面的进步极大地提高了贝叶斯方法用于回归和变量选择的可行性。讲习班提供了一个极好的机会,可以讨论贝叶斯模型选择和客观方法方面的许多最新重大发展;讨论已发现可行和不可行的办法;并确定重要问题和新的研究方向。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hani Doss其他文献
Bias Reduction When There Is No Unbiased Estimate.
当没有无偏估计时减少偏差。
- DOI:
10.1214/aos/1176347028 - 发表时间:
1989 - 期刊:
- 影响因子:4.5
- 作者:
Hani Doss;J. Sethuraman - 通讯作者:
J. Sethuraman
Confidence Bands for the Median Survival Time as a Function of the Covariates in the Cox Model
中位生存时间的置信带作为 Cox 模型中协变量的函数
- DOI:
10.1080/01621459.1993.10476415 - 发表时间:
1993 - 期刊:
- 影响因子:3.7
- 作者:
Deborah L Burr;Hani Doss - 通讯作者:
Hani Doss
HYPERPARAMETER AND MODEL SELECTION FOR NONPARAMETRIC BAYES PROBLEMS VIA RADON-NIKODYM DERIVATIVES
基于 RADON-NIKODYM 导数的非参数贝叶斯问题的超参数和模型选择
- DOI:
10.5705/ss.2009.259 - 发表时间:
2012 - 期刊:
- 影响因子:1.4
- 作者:
Hani Doss - 通讯作者:
Hani Doss
Discussion on the paper by Kong, McCullagh, Meng, Nicolae and Tan
Kong、McCullagh、Meng、Nicolae 和 Tan 对论文的讨论
- DOI:
10.1111/1467-9868.00405 - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
M. Evans;C. Robert;A. Davison;Wenxin Jiang;M. Tanner;Hani Doss;Jingkun Qin;K. Fokianos;S. MacEachern;M. Peruggia;Subharup Guha;S. Chib;Y. Ritov;J. Robins;Y. Vardi - 通讯作者:
Y. Vardi
An Elementary Approach to Weak Convergence for Quantile Processes, with Applications to Censored Survival Data
分位数过程弱收敛的基本方法及其在截尾生存数据中的应用
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
Hani Doss;R. Gill - 通讯作者:
R. Gill
Hani Doss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hani Doss', 18)}}的其他基金
Distributed Algorithms for Topic Models with Applications to Streaming Document Data and Cancer Genomics
主题模型的分布式算法及其在流文档数据和癌症基因组学中的应用
- 批准号:
1854476 - 财政年份:2019
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Workshop on New Directions in Monte Carlo Methods
蒙特卡罗方法新方向研讨会
- 批准号:
1241502 - 财政年份:2012
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
相似海外基金
Bayesian Machine Learning as a tool for Climate Scientists: An In-Person Workshop at the University of Cambridge
贝叶斯机器学习作为气候科学家的工具:剑桥大学的面对面研讨会
- 批准号:
NE/Y003675/1 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Training Grant
Workshop: Intensive, interdisciplinary short courses on Bayesian inference for ecologists
研讨会:针对生态学家的贝叶斯推理强化、跨学科短期课程
- 批准号:
2042028 - 财政年份:2021
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Travel Support for the 8th Workshop on Bayesian Nonparametrics (BNP 2011)
第八届贝叶斯非参数研讨会 (BNP 2011) 的差旅支持
- 批准号:
1101212 - 财政年份:2011
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Case Studies in Bayesian Statistics and Machine Learning Workshop Conference Travel; October 2009, Pittsburgh, PA
贝叶斯统计和机器学习研讨会会议旅行案例研究;
- 批准号:
0939609 - 财政年份:2009
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Seventh International Workshop on Objective Bayesian Methodology; Philadelphia, PA
第七届客观贝叶斯方法论国际研讨会;
- 批准号:
0924257 - 财政年份:2009
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Fifth International Workshop on Objective Bayesian Methodology
第五届客观贝叶斯方法论国际研讨会
- 批准号:
0506743 - 财政年份:2005
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
An International Workshop on Bayesian Data Analysis
贝叶斯数据分析国际研讨会
- 批准号:
0311766 - 财政年份:2003
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
U.S.-Africa Workshop: Educational and Research Workshop on Bayesian Analysis, Cape Town, South Africa, Dec 16-17, 1996
美国-非洲研讨会:贝叶斯分析教育和研究研讨会,南非开普敦,1996 年 12 月 16-17 日
- 批准号:
9601906 - 财政年份:1996
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Mathematical Sciences: Workshop on Bayesian Statistics in Science and Technology
数学科学:科学技术中的贝叶斯统计研讨会
- 批准号:
9505461 - 财政年份:1995
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Mathematical Sciences: Second International Workshop on Bayesian Robustness; May, 1995; Rimini, Italy
数学科学:第二届贝叶斯稳健性国际研讨会;
- 批准号:
9502157 - 财政年份:1995
- 资助金额:
$ 1万 - 项目类别:
Standard Grant














{{item.name}}会员




