CAREER: Parallelization using Inspector/Executor Strategies (PIES)
职业:使用检查器/执行器策略 (PIES) 进行并行化
基本信息
- 批准号:0746693
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-02-15 至 2014-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Irregular computations occur in many important science and engineering application domains such as solving partial differential equations over irregular grids, molecular dynamics simulations, and computations over sparse matrices. To address this problem, inspector/executor strategies have been developed where the inspector dynamically analyzes memory reference patterns and generates communication schedules and/or reorganizes computation and data, and the executor executes the irregular computation in parallel. Although inspector/executor strategies have been incorporated into many applications and libraries, these strategies are still hindered by two main problems: (1) Currently, no general framework exists for automating the process of incorporating inspector/executor strategies into programs despite the complexity and difficulty that by-hand synthesis entails. (2) The performance of irregular applications significantly lags that of regular applications ? and this gap is widening for current and next-generation high-end multi-core systems.This research involves developing a tool suite called PIES (Parallelization using Inspector/Executor Strategies) for the automatic incorporation of inspector/executor strategies into irregular applications. The PIES tool suite includes the Mapping Intermediate Representation (MapIR) for specifying irregular code and inspector/executor strategies, a program analysis tool capable of determining the legal application of various inspector/executor strategies, a code generator capable of automatically generating inspectors and executors, and performance models to guide the selection of inspector/executor strategies and their parameters. This research includes an outreach program for local high school students based on applying the PIES tool suite to molecular dynamics simulations. Use of the PIES tool suite reduces software development time by automating the incorporation of inspector/executor strategies into existing code and enables the development of new inspector/executor strategies.
不规则计算存在于许多重要的科学和工程应用领域中,例如在不规则网格上求解偏微分方程,分子动力学模拟和稀疏矩阵上的计算。为了解决这个问题,已经开发了检查器/执行器策略,其中检查器动态地分析存储器引用模式并生成通信调度和/或重组计算和数据,并且执行器并行地执行不规则计算。尽管检查员/执行者策略已经被纳入许多应用程序和库中,但这些策略仍然受到两个主要问题的阻碍:(1)目前,尽管手工合成带来了复杂性和困难,但仍然没有通用的框架来自动化将检查员/执行者策略纳入程序的过程。(2)非常规应用程序的性能明显落后于常规应用程序?这项研究涉及开发一个名为PIES(使用检查员/执行者策略的自动化)的工具套件,用于将检查员/执行者策略自动纳入不规则的应用程序。PIES工具套件包括用于指定不规则代码和检查器/执行器策略的映射中间表示(MapIR)、能够确定各种检查器/执行器策略的法律的应用的程序分析工具、能够自动生成检查器和执行器的代码生成器以及用于指导检查器/执行器策略及其参数的选择的性能模型。这项研究包括一个推广计划,当地高中学生的基础上应用PIES工具套件的分子动力学模拟。PIES工具套件的使用通过将检查员/执行者策略自动并入现有代码来减少软件开发时间,并且能够开发新的检查员/执行者策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michelle Strout其他文献
Enabling Code Generation within the Sparse Polyhedral Framework
在稀疏多面体框架内启用代码生成
- DOI:
10.1007/978-0-387-77907-2_2 - 发表时间:
2010 - 期刊:
- 影响因子:0.9
- 作者:
Alan LaMielle;Michelle Strout - 通讯作者:
Michelle Strout
Michelle Strout的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michelle Strout', 18)}}的其他基金
NSF Student Travel Grant for the 2019 Programming Languages Mentoring Workshop (PLMW) at ACM SIGPLAN Conference on Programming Language Design and Implementation, 2019
NSF 学生旅费补助金用于 2019 年 ACM SIGPLAN 编程语言设计与实现会议上的 2019 年编程语言指导研讨会 (PLMW)
- 批准号:
1923092 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: An Inspector/Executor Compilation Framework for Irregular Applications
SHF:Medium:协作研究:针对不规则应用的检查器/执行器编译框架
- 批准号:
1563732 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
The 24th International Workshop on Languages and Compilers for Parallel Computing (LCPC 2011)
第 24 届并行计算语言和编译器国际研讨会 (LCPC 2011)
- 批准号:
1144370 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Parallelization and robustness of random walks: Approaches from "short" random walks analysis
随机游走的并行化和鲁棒性:“短”随机游走分析的方法
- 批准号:
23K16840 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Parallelization strategies for morph graph algorithms
变形图算法的并行化策略
- 批准号:
RGPIN-2018-05082 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Automatic parallelization of sequential C, C++, and Rust for RISC-V multicores
RISC-V 多核的顺序 C、C 和 Rust 自动并行化
- 批准号:
572665-2022 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: SHF: Medium: Collaborative Automatic Parallelization
协作研究:SHF:中:协作自动并行化
- 批准号:
2107257 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Parallelization strategies for morph graph algorithms
变形图算法的并行化策略
- 批准号:
RGPIN-2018-05082 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: SHF: Medium: Collaborative Automatic Parallelization
协作研究:SHF:中:协作自动并行化
- 批准号:
2107042 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Large scale parallelization of single cell phenomics
单细胞表型组学的大规模并行化
- 批准号:
20K06584 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Parallelization strategies for morph graph algorithms
变形图算法的并行化策略
- 批准号:
RGPIN-2018-05082 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Acceleration of a Navier-Stokes Equation Solver Using GPU Parallelization and Multigrid
使用 GPU 并行化和多重网格加速纳维-斯托克斯方程求解器
- 批准号:
539961-2019 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
University Undergraduate Student Research Awards