CAREER: Gas-Liquid Interface Dynamics and Dissipation Mechanisms in Capillary-Scale Two-Phase Flow
职业:毛细管规模两相流中的气液界面动力学和耗散机制
基本信息
- 批准号:0748049
- 负责人:
- 金额:$ 40.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-05-01 至 2014-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CBET-0748049AllenTwo-phase flow in large-scale systems has historically been important to the fields of hydrodynamics and heat transfer. Advances in MEMS analytical devices, microscale heat exchangers, space-based processing and thermal control technologies, and terrestrial-based technologies such as fuel cells have highlighted the need for improved understanding of gas-liquid flow with a strong capillary component. Attempts at developing universal flow regime maps for small scale systems have been unsuccessful due to the inability to properly account for the effects of capillary forces, dissipation due to menisci motion and gas-liquid interface interaction. The PI will conduct a systematic experimental and analytical investigation of two-phase flow at the capillary scale and develop engineering design tools. Educational opportunities for pre-college, undergraduate and graduate students are integrated throughout the research program. The first three overlapping research phases consists of qualitative experiments to study gas-liquid interface dynamics and development of a high-speed confocal microscopy technique. The second phase of this program focuses on quantitative studies utilizing the high-speed confocal microscopy technique for micro-Particle Image Velocimetry (micro-PIV) near dynamic gas-liquid interfaces; a region of flow not accessible with any currently available micro-PIV methods. The analytical and experimental studies of the second phase will isolate and quantify the effects of surface tension, interface curvature, interface shear, gas phase inertia and compressibility, hydrodynamic dissipation due to menisci motion and dynamic contact lines on the morphology of the two-phase flow through microchannels. All of these effects have been observed in capillary-scale two-phase flow, but not quantified. The third phase will construct and test predictive tools for design and development of advanced technologies and to improve water management strategies for more reliable fuel cell operation. The results of research will help in development of automotive fuel cells where inability to effectively manage the water produced by the hydrogen-oxygen reaction constitutes one of the major difficulties in mass deployment. Impacts of this research have an educational aspect and a societal aspect. Graduate and undergraduate student training is an important part of this work. Students will be recruited from under-represented groups through existing Michigan Tech educational partnerships. A key element of the educational aspect of this study is the tiered mentoring of graduate to undergraduate students and undergraduate to pre-college students where students learn through demonstration and instruction from other students. The societal impact will be most evident in advanced technology development; particularly with respect to alternative energy conversion technologies such as fuel cells. The results of this study will be a more thorough, quantitative understanding of two-phase flow in systems where capillary forces are important and application of this understanding to advance technology while developing student talent in the growing field of microscale devices and fuel cells.
CBET-0748049大系统中的Allen两相流一直是流体力学和传热学领域的重要研究课题。MEMS分析设备、微型热交换器、空间处理和热控制技术以及燃料电池等陆基技术的进步突出表明,需要更好地了解具有强大毛细管组件的气液两相流动。由于不能很好地考虑毛细管力、弯月面运动引起的耗散和气液界面相互作用的影响,为小规模系统开发通用流型图的尝试失败了。PI将在毛细管尺度上对两相流动进行系统的实验和分析研究,并开发工程设计工具。为大学预科、本科生和研究生提供的教育机会贯穿整个研究项目。前三个重叠的研究阶段包括研究气液界面动力学的定性实验和高速共聚焦显微镜技术的发展。该计划的第二阶段侧重于利用高速共聚焦显微镜技术在动态气液界面附近进行微粒子图像测速(Micro-PIV)的定量研究;这是目前任何现有的Micro-PIV方法都无法到达的流动区域。第二阶段的分析和实验研究将分离和量化表面张力、界面曲率、界面剪切、气相惯性和可压缩性、弯月运动引起的流体动力耗散以及动态接触线对微通道内两相流动形态的影响。所有这些效应在毛细管尺度的两相流中都观察到了,但没有被量化。第三阶段将构建和测试用于设计和开发先进技术的预测工具,并改进水管理战略,以实现更可靠的燃料电池运行。研究结果将有助于汽车燃料电池的开发,在汽车燃料电池中,无法有效管理氢-氧反应产生的水是大规模部署的主要困难之一。这项研究的影响有教育方面和社会方面。研究生和本科生培养是这项工作的重要组成部分。学生将通过现有的密歇根理工教育合作伙伴关系从代表性不足的群体中招生。这项研究的教育方面的一个关键要素是对研究生到本科生以及本科生到预科学生的分层指导,学生通过示范和向其他学生的指导来学习。先进技术的开发将产生最明显的社会影响;特别是在燃料电池等替代能源转换技术方面。这项研究的结果将是对毛细管力很重要的系统中的两相流动有更全面、更定量的了解,并应用这一理解来促进技术进步,同时培养不断增长的微型设备和燃料电池领域的学生人才。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Allen其他文献
Embedding user-centred design in policymaking at the UK Ministry of Justice
将以用户为中心的设计融入英国司法部的政策制定中
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Jeffrey Allen - 通讯作者:
Jeffrey Allen
OA19.05 High Oncofetal Chondroitin Sulfate Expression is an Independent Prognostic Factor of Poor Survival in Early-Stage NSCLC
- DOI:
10.1016/j.jtho.2016.11.340 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:
- 作者:
Zoltan Lohinai;Htoo Oo;Gunjan Kumar;Jeffrey Allen;Nhan Tran;Balazs Dome;Judit Moldvay;Glen Weiss;Mads Daugaard - 通讯作者:
Mads Daugaard
Dopaminergic function in gilles de la tourette's syndrome, sydenham's chorea and torsion dystonia
- DOI:
10.1016/s0303-8467(76)80008-x - 发表时间:
1976-01-01 - 期刊:
- 影响因子:
- 作者:
Samarthji Lal;Jeffrey Allen;Pierre Etienne;Theodore L. Sourkes;Peter Humphreys - 通讯作者:
Peter Humphreys
The haemodynamic effect of an intracranial arteriovenous anomaly. A dopper-haematotachographic study
- DOI:
10.1016/s0303-8467(76)80009-1 - 发表时间:
1976-01-01 - 期刊:
- 影响因子:
- 作者:
Samarthji Lal;Jeffrey Allen;Pierre Etienne;Theodore L. Sourkes;Peter Humphreys - 通讯作者:
Peter Humphreys
Morphological study of skin biopsy specimens: Important contribution to the diagnosis of inherited neuro-degenerative disorders
- DOI:
10.1016/s0303-8467(76)80010-8 - 发表时间:
1976-01-01 - 期刊:
- 影响因子:
- 作者:
Samarthji Lal;Jeffrey Allen;Pierre Etienne;Theodore L. Sourkes;Peter Humphreys - 通讯作者:
Peter Humphreys
Jeffrey Allen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Allen', 18)}}的其他基金
Collaborative Research: Interfacial Instability, Convective Motion and Heat Transfer in Evaporating Films
合作研究:蒸发膜中的界面不稳定性、对流运动和传热
- 批准号:
0651790 - 财政年份:2007
- 资助金额:
$ 40.06万 - 项目类别:
Standard Grant
相似国自然基金
LncRNA GAS5竞争性结合外泌体miR-21-5p靶向TNFAIP3调控巨噬细胞极化促进肩袖腱骨界面修复作用的机制研究
- 批准号:2025JJ80589
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
骨肉瘤干细胞通过分泌GAS6诱导肌成纤
维细胞促进免疫逃逸的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
内源性SO2通过抑制DNMT1甲基化LncRNA GAS5拮抗硫酸吲哚酚诱发的心肌细胞焦亡及心肌纤维化
- 批准号:2025JJ50606
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
LncRNA GAS5竞争性结合miR-21/PTEN轴靶向乳酸脱氢酶调控子宫内膜异位症糖酵解
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
lncRNA Gas5调控M1巨噬细胞极化在糖尿病肾病肾纤维化中的作用机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Gas6/Axl信号轴调控铁死亡探索bFGF@adExos/GelMA复合水凝胶促脊髓损伤修复的研究
- 批准号:MS25H090029
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
LncRNA GAS5调控RUNX3/CD80/CD28轴促进甲状腺癌免疫激活的分子机制研究
- 批准号:2025JJ70535
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于TAZ/miR-942-3P/GAS1通路探讨补肾活血方介导子宫内膜上皮细胞糖代谢重编程对宫腔粘连的作用机制研究
- 批准号:2025JJ80912
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
ESM1抑制GAS5影响PTEN/PI3K/Akt信号通路促进卵巢癌细胞顺铂耐药
- 批准号:2025JJ50543
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“健脾泄浊”理论探讨泽泻汤抑制单核巨噬细胞GAS6泛素化激活胞葬作用改善NASH的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
相似海外基金
A Parallel, High-Fidelity Coupled Machine Learning/ CFD Solver Method for Solving Exascale CFD Problems with Turbulence Damping at the Liquid-Gas Inte
一种并行、高保真耦合机器学习/CFD 求解器方法,用于解决液气界面湍流阻尼的百亿亿次 CFD 问题
- 批准号:
2883937 - 财政年份:2023
- 资助金额:
$ 40.06万 - 项目类别:
Studentship
Gas-Liquid Transition of Electrical-Discharge-Induced Reaction Field in Dielectric Fluids
电介质流体中放电感应反应场的气液转变
- 批准号:
23K13090 - 财政年份:2023
- 资助金额:
$ 40.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Temporal and Spatial Concentration of Energy Using Solid-Gas-Liquid Mixed Phases and Development to Improve Fatigue Strength of 3D Metals
利用固-气-液混合相进行能量的时空集中以及提高3D金属疲劳强度的开发
- 批准号:
23H01292 - 财政年份:2023
- 资助金额:
$ 40.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Rational Design of Ionene + Ionic Liquid Membranes Based on Understanding Gas Transport on Different Length Scales
合作研究:基于不同长度尺度气体传输的紫罗烯离子液体膜的合理设计
- 批准号:
2312000 - 财政年份:2023
- 资助金额:
$ 40.06万 - 项目类别:
Standard Grant
PRIME: Unresolved fluid mechanics at liquid/gas interfaces for PRIMary brEakup of atomizing sprays
PRIME:雾化喷雾初次破裂的液体/气体界面处未解决的流体力学
- 批准号:
EP/Y028848/1 - 财政年份:2023
- 资助金额:
$ 40.06万 - 项目类别:
Research Grant
Non-equilibrium presolvation electron processes at the gas-liquid interface
气液界面非平衡预溶剂化电子过程
- 批准号:
DP220101480 - 财政年份:2023
- 资助金额:
$ 40.06万 - 项目类别:
Discovery Projects
Elucidation of the physics of solid-liquid-gas three-phase contact line near structures through the integration of nanoscale interfacial technologies
通过纳米级界面技术的集成阐明结构附近固-液-气三相接触线的物理性质
- 批准号:
22KK0249 - 财政年份:2023
- 资助金额:
$ 40.06万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Development of MPS method to predict gas-liquid-liquid three phase flow for the future visualization of MCCI
开发 MPS 方法来预测气-液-液三相流,以实现 MCCI 的未来可视化
- 批准号:
23K19040 - 财政年份:2023
- 资助金额:
$ 40.06万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Collaborative Research: Rational Design of Ionene + Ionic Liquid Membranes Based on Understanding Gas Transport on Different Length Scales
合作研究:基于不同长度尺度气体传输的紫罗烯离子液体膜的合理设计
- 批准号:
2312001 - 财政年份:2023
- 资助金额:
$ 40.06万 - 项目类别:
Standard Grant
Elucidation and control of mutual dynamics of bulk flow-gas-liquid surface tension gradient associated with high-speed elongation behavior
与高速伸长行为相关的散装流-气-液表面张力梯度的相互动力学的阐明和控制
- 批准号:
23K13251 - 财政年份:2023
- 资助金额:
$ 40.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists