Saddlepoint and Bootstrap Methods in Stochastic Systems and Related Fields
随机系统及相关领域中的鞍点和自举方法
基本信息
- 批准号:0750451
- 负责人:
- 金额:$ 14.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-31 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract The author proposes to develop a complete framework for implementing nonparametric statistical inference in stochastic systems. These stochastic systems are semi-Markov processes and include most of the commonly used stochastic models in reliability, multi-state survival analysis, epidemic modeling, and communication and manufacturing systems. Three tools are required to complete the framework: cofactor rules for transforms, saddlepoint approximations to invert the transforms, and the bootstrap to provide statistical inference in conjunction with the two previous tools. With any one of the three tools missing, statistical inference is no longer generally possible. Such a complete theory was the goal of the cybernetics movement during the late 40s to mid 70s which devoted a great deal of effort into developing a Laplace transform approach to such modelling. Ultimately this approach failed due to the difficulty of inverting the transforms involved, a task very successfully performed by using saddlepoint approximations. It also lacked a statistical theory of inference, a need that is filled admirably by the bootstrap. The work of this proposal takes a step towards achieving the ultimate aims of the cybernetics movement: to facilitate probability computations and nonparametric (bootstrap) inference for stochastic systems that cannot be easily achieved by other means. Bootstrap simulation for inference without saddlepoint assistance is beyond computational feasibility for systems of even modest size and complexity. This project proposes to develop a complete framework for implementing nonparametric statistical inferencein complex stochastic systems. These stochastic systems include most of the commonly used stochastic modelsused in reliability, multi-state survival analysis, epidemic modelling, and communication and manufacturingsystems. The proposal also addresses significant questions in other disciplines where answers are lacking due to certain computational difficulties. In population genetics, solutions are provided for statistical inference problems dealing with natural selection, mutation and genetic drift; in ocean and electrical engineering accurate approximations are given for distributions of wave crest heights in models used for sea surfaces and in signal processing; in biological models for the transmission of pain through the nervous system, methods are given to allow inferences about the underlying mechanisms that drive the fluctuating polarities of these ion channel models with the ultimate aim of helping to reveal the mechanisms that control pain sensation.
作者提出了一个完整的框架来实现随机系统中的非参数统计推理。这些随机系统是半马尔可夫过程,包括可靠性、多状态生存分析、流行病建模、通信和制造系统中大多数常用的随机模型。完成这个框架需要三个工具:用于变换的协因式规则、用于反转变换的鞍点近似,以及用于与前面两个工具结合提供统计推断的自举。如果缺少这三种工具中的任何一种,通常就不再可能进行统计推断。这样一个完整的理论是控制论运动在40年代末到70年代中期的目标,它投入了大量的精力来发展这种建模的拉普拉斯变换方法。最终,这种方法失败了,因为所涉及的变换反转困难,这是一个通过使用鞍点近似非常成功地完成的任务。它还缺乏推理的统计理论,而这一需求被bootstrap令人钦佩地填补了。这一建议的工作朝着实现控制论运动的最终目标迈出了一步:促进概率计算和随机系统的非参数(自举)推理,这是其他方法无法轻易实现的。在没有鞍点辅助的情况下进行推理的自举模拟超出了中等规模和复杂性系统的计算可行性。本项目拟建立一个完整的框架,用于在复杂随机系统中实现非参数统计推理。这些随机系统包括大多数常用的随机模型,用于可靠性,多状态生存分析,流行病建模,通信和制造系统。该提案还解决了其他学科中由于某些计算困难而缺乏答案的重要问题。在群体遗传学中,提供了处理自然选择、突变和遗传漂变的统计推断问题的解决方案;在海洋和电气工程中,海面模型和信号处理中给出了波峰高度分布的精确近似;在疼痛通过神经系统传递的生物学模型中,给出了方法来推断驱动这些离子通道模型极性波动的潜在机制,最终目的是帮助揭示控制疼痛感觉的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ronald Butler其他文献
Ronald Butler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ronald Butler', 18)}}的其他基金
Saddlepoint and Bootstrap Accuracy with Applications to General Systems Theory
鞍点和自举精度及其在一般系统理论中的应用
- 批准号:
1104474 - 财政年份:2011
- 资助金额:
$ 14.75万 - 项目类别:
Continuing Grant
Saddlepoint and Bootstrap Methods in Stochastic Systems and Related Fields
随机系统及相关领域中的鞍点和自举方法
- 批准号:
0604318 - 财政年份:2006
- 资助金额:
$ 14.75万 - 项目类别:
Continuing Grant
Saddlepoint and Bootstrap Methods in Systems Theory and Survival Analysis
系统理论和生存分析中的鞍点和引导方法
- 批准号:
0202284 - 财政年份:2002
- 资助金额:
$ 14.75万 - 项目类别:
Standard Grant
Mathematical Sciences: Saddlepoint Methods in Statistics
数学科学:统计学中的鞍点方法
- 批准号:
9304274 - 财政年份:1993
- 资助金额:
$ 14.75万 - 项目类别:
Continuing Grant
Acoustic Analysis Workstation for Behavioral Ecology Laboratories
行为生态学实验室声学分析工作站
- 批准号:
9251477 - 财政年份:1992
- 资助金额:
$ 14.75万 - 项目类别:
Standard Grant
Mathematical Sciences: Saddlepoint Methods and Likelihood
数学科学:鞍点方法和似然法
- 批准号:
9106620 - 财政年份:1991
- 资助金额:
$ 14.75万 - 项目类别:
Continuing Grant
Mathematical Sciences: Predictive Likelihood
数学科学:预测可能性
- 批准号:
8996150 - 财政年份:1988
- 资助金额:
$ 14.75万 - 项目类别:
Continuing Grant
Mathematical Sciences: Predictive Likelihood
数学科学:预测可能性
- 批准号:
8802882 - 财政年份:1988
- 资助金额:
$ 14.75万 - 项目类别:
Continuing grant
相似国自然基金
缺陷共形场论的Bootstrap研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Bootstrap在复杂抽样中的统计推断
- 批准号:11901487
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于Bootstrap-DEA的公立医院“成本-效率”评价模型构建及其应用研究
- 批准号:71573061
- 批准年份:2015
- 资助金额:43.0 万元
- 项目类别:面上项目
基于Sieve Bootstrap方法的长记忆过程变点研究与应用
- 批准号:11301291
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
Bootstrap方法在阵列信号处理方面的应用
- 批准号:61201410
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
空间面板数据模型LM检验Bootstrap方法有效性研究
- 批准号:71271088
- 批准年份:2012
- 资助金额:55.0 万元
- 项目类别:面上项目
空间经济计量模型检验中Bootstrap方法有效性研究
- 批准号:70871041
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Bootstrap Methods in High Dimensions: Complex Dependence Structures and Refinements
高维引导方法:复杂的依赖结构和改进
- 批准号:
2014636 - 财政年份:2020
- 资助金额:
$ 14.75万 - 项目类别:
Standard Grant
Bootstrap Methods in Modern Settings: Inference and Computation
现代环境中的引导方法:推理和计算
- 批准号:
1915786 - 财政年份:2019
- 资助金额:
$ 14.75万 - 项目类别:
Continuing Grant
Bootstrap methods for testing and forecasting with estimated factors
使用估计因素进行测试和预测的 Bootstrap 方法
- 批准号:
RGPIN-2014-06482 - 财政年份:2018
- 资助金额:
$ 14.75万 - 项目类别:
Discovery Grants Program - Individual
Bootstrap methods for testing and forecasting with estimated factors
使用估计因素进行测试和预测的 Bootstrap 方法
- 批准号:
RGPIN-2014-06482 - 财政年份:2017
- 资助金额:
$ 14.75万 - 项目类别:
Discovery Grants Program - Individual
Bootstrap methods for testing and forecasting with estimated factors
使用估计因素进行测试和预测的 Bootstrap 方法
- 批准号:
RGPIN-2014-06482 - 财政年份:2016
- 资助金额:
$ 14.75万 - 项目类别:
Discovery Grants Program - Individual
Bootstrap methods for testing and forecasting with estimated factors
使用估计因素进行测试和预测的 Bootstrap 方法
- 批准号:
RGPIN-2014-06482 - 财政年份:2015
- 资助金额:
$ 14.75万 - 项目类别:
Discovery Grants Program - Individual
Bootstrap methods for testing and forecasting with estimated factors
使用估计因素进行测试和预测的 Bootstrap 方法
- 批准号:
RGPIN-2014-06482 - 财政年份:2015
- 资助金额:
$ 14.75万 - 项目类别:
Discovery Grants Program - Individual
Bootstrap methods for testing and forecasting with estimated factors
使用估计因素进行测试和预测的 Bootstrap 方法
- 批准号:
RGPIN-2014-06482 - 财政年份:2014
- 资助金额:
$ 14.75万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Nonparametric methods in multiple dimensions: shape restrictions, bootstrap and beyond
职业:多维非参数方法:形状限制、引导程序等
- 批准号:
1150435 - 财政年份:2012
- 资助金额:
$ 14.75万 - 项目类别:
Continuing Grant
The improvement of investment approaches by developing and applying bootstrap methods to innovative evolutionary kernel-based subset time-series modelling.
通过开发引导方法并将其应用于创新的基于进化内核的子集时间序列建模来改进投资方法。
- 批准号:
LP0883801 - 财政年份:2009
- 资助金额:
$ 14.75万 - 项目类别:
Linkage Projects