FRG: Collaborative Research: Semidefinite optimization and convex algebraic geometry

FRG:协作研究:半定优化和凸代数几何

基本信息

  • 批准号:
    0757212
  • 负责人:
  • 金额:
    $ 47.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

The goal in this proposal is to develop the mathematical foundations andassociated computational methods for the study of convex sets in realalgebraic geometry. This work requires a combination of ideas andmathematical tools from optimization, analysis, algebra and combinatorics.The proposed program will lead not only to theoretical insights, but also tonew algorithms and software that will enable novel applications inmathematics, engineering, and beyond. The work is organized in five mainthrusts: semidefinite programming and sums of squares, convex semi-algebraicsets, sparsity and graphical structure, numerical polynomial optimizationand applications, and deformations and variation of parameters. The PIs willfocus on the development of a comprehensive theory and practical newalgorithms for convex sets defined by polynomial inequalities. Specificproblems and techniques include the formulation of semidefinite descriptionsof convex hulls of real algebraic varieties, determinantal representationsof hyperbolic polynomials, sparse polynomials and their symmetries, tropicalgeometry and homotopy techniques, and geometric programming.Many areas in mathematics, as well as applications in engineering, financeand the sciences, require a thorough understanding of convex sets. This is aclass of geometric shapes, with several different but complementaryinterpretations. The goal in this project is to achieve a betterunderstanding of how these geometric properties emerge from their algebraicdescriptions in terms of polynomial equations, and the correspondingcomputational implications. One of the main motivations is the possibilityof applying these results in the context of optimization. The proposedresearch will contribute to existing knowledge, both in algebraic-geometrictechniques as well as in mathematical optimization. It will create synergiesbetween different branches of applied mathematics, and their engineering andscientific applications (e.g., in computational biology and statisticalmodeling). Successful completion of this project should contribute to theavailability of efficient and reliable computational tools for solvingpolynomial systems, which have clear technological and economic interest.Other key features of this proposal include its integration with curriculumdevelopment, undergraduate research projects, training of graduate studentsand postdocs, and the development of new software tools for computationaloptimization.
本提案的目标是发展实代数几何凸集研究的数学基础和相关的计算方法。这项工作需要结合优化、分析、代数和组合学的思想和数学工具。该计划不仅会带来理论见解,还会带来新的算法和软件,使数学、工程等领域的新应用成为可能。这项工作分为五个主要方向:半定规划和平方和,凸半代数集,稀疏性和图形结构,数值多项式优化和应用,以及参数的变形和变化。pi将集中于发展一个全面的理论和实用的新算法,为由多项式不等式定义的凸集。具体的问题和技术包括实代数变量凸壳的半定描述,双曲多项式的行列式表示,稀疏多项式及其对称性,热带几何和同伦技术,以及几何规划。数学中的许多领域,以及工程、金融和科学中的应用,都需要对凸集有透彻的理解。这是一类几何形状,有几种不同但互补的解释。该项目的目标是更好地理解这些几何性质是如何从多项式方程的代数描述中产生的,以及相应的计算含义。其中一个主要动机是在优化上下文中应用这些结果的可能性。提出的研究将有助于现有的知识,无论是在代数几何技术,以及在数学优化。它将在应用数学的不同分支及其工程和科学应用(例如,在计算生物学和统计建模)之间创造协同效应。这个项目的成功完成将有助于求解多项式系统的有效和可靠的计算工具的可用性,这具有明确的技术和经济利益。该提案的其他关键特征包括与课程开发、本科生研究项目、研究生和博士后培训以及用于计算优化的新软件工具的开发相结合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

J. William Helton其他文献

NonlinearH ∞ control theory for stable plants
Optimization over analytic functions whose founrier coefficients are constrained
  • DOI:
    10.1007/bf01203384
  • 发表时间:
    1995-12-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    J. William Helton;Orlando Merino;Trent E. Walker
  • 通讯作者:
    Trent E. Walker
The Hessian of a noncommutative polynomial has numerous negative eigenvalues
  • DOI:
    10.1007/s11854-007-0016-y
  • 发表时间:
    2007-08-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Harry Dym;J. William Helton;Scott Mccullough
  • 通讯作者:
    Scott Mccullough
Factorization results related to shifts in an indefinite metric
Classification of all noncommutative polynomials whose Hessian has negative signature one and a noncommutative second fundamental form
  • DOI:
    10.1007/s11854-009-0017-0
  • 发表时间:
    2009-09-11
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Harry Dym;Jeremy M. Greene;J. William Helton;Scott A. McCullough
  • 通讯作者:
    Scott A. McCullough

J. William Helton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('J. William Helton', 18)}}的其他基金

Operator Theory Arising from Systems Engineering
源于系统工程的算子理论
  • 批准号:
    1500835
  • 财政年份:
    2015
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Continuing Grant
Operator Theory Arising from Systems Engineering
源于系统工程的算子理论
  • 批准号:
    1201498
  • 财政年份:
    2012
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Continuing Grant
Operator Theory Arising from Systems Engineering
源于系统工程的算子理论
  • 批准号:
    0700758
  • 财政年份:
    2007
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Continuing Grant
Operator Theory Arising from Systems Engineering
源于系统工程的算子理论
  • 批准号:
    0400794
  • 财政年份:
    2004
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Continuing Grant
Operatory Theory and Systems Engineering
操作理论与系统工程
  • 批准号:
    0100576
  • 财政年份:
    2001
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Continuing Grant
Operator Theory and Systems Engineering
算子理论与系统工程
  • 批准号:
    9732891
  • 财政年份:
    1998
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Operator Theory and Systems Engineering
数学科学:算子理论与系统工程
  • 批准号:
    9501064
  • 财政年份:
    1995
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Operator Theory and Systems Engineering
数学科学:算子理论与系统工程
  • 批准号:
    9207740
  • 财政年份:
    1992
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Operator Theory and Communications Engineering
数学科学:算子理论与通信工程
  • 批准号:
    8902098
  • 财政年份:
    1989
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Conference on Functional Analysis andApplications
数学科学:泛函分析与应用会议
  • 批准号:
    8703163
  • 财政年份:
    1987
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 47.9万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了