FRG: Collaborative Research: Prediction and Risk of Extreme Events Utilizing Mathematical Computer Models of Geophysical Processes
FRG:协作研究:利用地球物理过程的数学计算机模型预测极端事件和风险
基本信息
- 批准号:0757367
- 负责人:
- 金额:$ 28.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to develop the mathematical, statistical and computational tools needed to assess and predict the risk associated with geophysical hazards such as volcanic pyroclastic flows. Based on a preliminary data analysis, the investigators develop stochastic models beginning with stationary independent increment processes employing (possibly tapered) Pareto distributions for the volumes of pyroclastic flows exceeding some observational threshold, in the domain of attraction of an alpha-stable process governing the aggregate flow volume of multiple smaller eruptions. Von Mises distributions are used for flow initiation angles. The deterministic TITAN2D two-dimensional computational environment is employed, which uses available digital elevation maps to predict the impact at various sites of interest from flows of specified volume and initiation angles. TITAN2D is a depth-averaged, thin-layer computational fluid dynamics code based on an adaptive grid Godunov solver, suitable for simulating geophysical mass flows. A rapid emulator based on a simple Gaussian random-field approximation to the TITAN2D model enables the investigators to emulate hundreds of thousands of TITAN2D runs and construct an estimate of the set of possible flow volumes and initiation angles that would lead to significant impact; a hierarchical Bayesian statistical model then reflects the probability of such an impact over a specified period of time.Recent advances in computing power and algorithms have led to the application of mathematical and computer modeling to such highly complex phenomena as storms, floods, earthquakes and volcanic eruptions. It is increasingly being understood that development of mathematical models of these phenomena is only one part of a much more complex process needed for making reliable estimates and predictions of risk. This project develops the mathematical, statistical and computational tools needed for assessing and predicting the risk associated with such natural hazards. A particular focus of the work is the study of how these risks vary in space and time, and of how uncertain they are. This methodology is developed in context of the specific problem of volcanic avalanches and pyroclastic flows (so-called geophysical mass flows), but much of it will be applicable more broadly to problems in the analysis and quantification of risk in problems featuring spatial variability and model uncertainty. It brings together a unique team of scientists with specialties including volcanology, to guide the development of realistic models for the geophysical processes under study; in stochastic processes, to reflect uncertainty and variability about initial conditions, flow frequencies, and other features in realistic and verifiable ways; in deterministic computer modeling, for the difficult task of making detailed spatial predictions of the consequences of the most probable and of the most hazardous possible events; in computer model emulation, to accelerate many thousand-fold the computations necessary for predicting the risk of rare events under a wide range of possible scenarios; and in statistical modeling and analysis, to reflect honestly all the different sources of uncertainty and variability in this analysis, leading to a full quantification of the risk of hazardous events. Only with such a broad range of expertise can investigators build the tapestry of science that is required to develop tools for studying devastating natural hazards.
该项目的目标是开发评估和预测与地球物理灾害(如火山火山碎屑流)有关的风险所需的数学、统计和计算工具。在初步数据分析的基础上,研究人员开发了随机模型,从平稳的独立增量过程开始,采用(可能是锥形的)帕累托分布,用于超过某些观测阈值的火山碎屑流的体积,在一个控制多个较小喷发的总流量的α稳定过程的吸引力领域。流动起始角采用Von Mises分布。采用确定性的二维TITAN2D计算环境,使用可用的数字高程图来预测特定体积和起始角的流动对各个感兴趣地点的影响。TITAN2D是一种基于自适应网格Godunov解算器的深度平均薄层计算流体动力学代码,适用于模拟地球物理质量流。基于简单高斯随机场近似的快速仿真器使研究人员能够模拟成千上万的TITAN2D运行,并构建可能导致重大影响的流量和起爆角的估计集;然后,一个层次贝叶斯统计模型反映了这种影响在特定时期内发生的概率。最近计算能力和算法的进步使得数学和计算机建模应用于风暴、洪水、地震和火山爆发等高度复杂的现象。人们日益认识到,为这些现象建立数学模型只是对风险作出可靠估计和预测所需的更为复杂的过程的一部分。该项目开发了评估和预测与此类自然灾害有关的风险所需的数学、统计和计算工具。这项工作的一个特别重点是研究这些风险在空间和时间上是如何变化的,以及它们的不确定性有多大。这种方法是在火山雪崩和火山碎屑流(所谓的地球物理质量流)的具体问题的背景下发展起来的,但它的大部分将更广泛地适用于以空间可变性和模型不确定性为特征的问题的风险分析和量化问题。它汇集了一个独特的科学家团队,他们的专长包括火山学,以指导正在研究的地球物理过程的现实模型的发展;在随机过程中,以现实和可验证的方式反映初始条件、流动频率和其他特征的不确定性和可变性;在确定性计算机建模中,对最可能和最危险的可能事件的后果进行详细的空间预测的困难任务;在计算机模型仿真中,在广泛的可能情景下,将预测罕见事件风险所需的计算速度提高数千倍;在统计建模和分析中,诚实地反映分析中所有不确定性和可变性的不同来源,从而对危险事件的风险进行全面量化。只有拥有如此广泛的专业知识,调查人员才能构建出研究毁灭性自然灾害所需的科学织锦。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
E Bruce Pitman其他文献
E Bruce Pitman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('E Bruce Pitman', 18)}}的其他基金
CDS&E: Collaborative Research: Surrogates and Reduced Order Modeling for High Dimensional Coupled Systems
CDS
- 批准号:
2053874 - 财政年份:2021
- 资助金额:
$ 28.56万 - 项目类别:
Standard Grant
IDR/Collaborative Research: Characterizing Uncertainty in the Motion of Volcanic Plumes Advected by Wind Fields
IDR/合作研究:表征风场平流火山羽流运动的不确定性
- 批准号:
1131074 - 财政年份:2011
- 资助金额:
$ 28.56万 - 项目类别:
Continuing Grant
SCREMS: Scientific Computing Research Environment for the Mathematical Sciences at Buffalo
SCEMS:布法罗数学科学研究环境
- 批准号:
0722504 - 财政年份:2007
- 资助金额:
$ 28.56万 - 项目类别:
Standard Grant
CMG: Studies of Sediment Gravity Flows
CMG:沉积物重力流研究
- 批准号:
0620991 - 财政年份:2006
- 资助金额:
$ 28.56万 - 项目类别:
Standard Grant
Multidimensional Problems in Granular Plasticity
颗粒塑性的多维问题
- 批准号:
9971188 - 财政年份:1999
- 资助金额:
$ 28.56万 - 项目类别:
Standard Grant
Multidimensional Problems in Granular Plasticity
颗粒塑性的多维问题
- 批准号:
9802520 - 财政年份:1998
- 资助金额:
$ 28.56万 - 项目类别:
Standard Grant
Mathematical Sciences: Multidimensional Problems in Dynamic Plasticity
数学科学:动态塑性的多维问题
- 批准号:
9504433 - 财政年份:1995
- 资助金额:
$ 28.56万 - 项目类别:
Continuing Grant
Mathematical Sciences: Multidimensional Problems in DynamicPlasticity
数学科学:动态塑性中的多维问题
- 批准号:
9201062 - 财政年份:1992
- 资助金额:
$ 28.56万 - 项目类别:
Continuing Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 28.56万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 28.56万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 28.56万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 28.56万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 28.56万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 28.56万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 28.56万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 28.56万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 28.56万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 28.56万 - 项目类别:
Continuing Grant