Nearly Optimal Solutions for Stochastic Optimization Problems

随机优化问题的近乎最优解

基本信息

  • 批准号:
    0758069
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-15 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

This grant provides funding for the development of optimization tools and data structures for a wide class of deterministic and stochastic optimization problems. The purpose of the tools is to aid in the development and automated analysis of approximation algorithms, especially approximation algorithms for stochastic optimization problems. The research will focus on Fully Polynomial Time Approximation Schemes (FPTASs) for stochastic dynamic programs. These algorithms guarantee obtaining a solution that is within any specified small error, and where the running time is polynomial in the size of the problem and the inverse of the error. Within the class of approximation algorithms, FPTASs offer the best tradeoffs of guaranteed accuracy versus computational time. In order to develop efficient FPTASs, the research will develop a collection of objects for representing and manipulating approximated functions, as well as a library of algorithms for these objects that can readily be used by other researchers.If successful, the project will lead to improved algorithms for stochastic optimization problems that arise in several different fields of study including: supply chain management, economics, scheduling and mathematical finance. The research will develop efficient algorithms for fundamental problems in these fields such as single-item inventory control, capital budgeting, dynamic capacity expansion, time-cost tradeoff machine scheduling, batch disposal, and mutual fund cash management. Subsequently, the efficient approaches for the fundamental problems can be used as subroutines in more complex and realistic problems in these fields. The proposed work will also lead to new data structures and data objects that will facilitate the development and analysis of approximation algorithms that arise in these and other fields.
这项拨款为开发优化工具和数据结构提供资金,用于广泛的确定性和随机优化问题。这些工具的目的是帮助逼近算法的开发和自动分析,特别是随机优化问题的逼近算法。研究的重点是随机动态规划的全多项式时间逼近方案。这些算法保证得到的解在任何指定的小误差范围内,并且运行时间是问题大小的多项式和误差的反比。在近似算法类中,FPTASs提供了保证精度与计算时间的最佳权衡。为了开发高效的FPTASs,该研究将开发用于表示和操作近似函数的对象集合,以及用于这些对象的算法库,这些对象可以很容易地被其他研究人员使用。如果成功,该项目将导致改进算法的随机优化问题出现在几个不同的研究领域,包括:供应链管理,经济学,调度和数学金融。本研究将为这些领域的基本问题,如单项目库存控制、资本预算、动态产能扩张、时间成本权衡机器调度、批量处置和共同基金现金管理,开发有效的算法。随后,这些基本问题的有效方法可以作为这些领域中更复杂和现实问题的子程序。提议的工作还将导致新的数据结构和数据对象,这将促进在这些和其他领域出现的近似算法的开发和分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Orlin其他文献

Complexity results for equistable graphs and related classes
  • DOI:
    10.1007/s10479-010-0720-3
  • 发表时间:
    2010-02-21
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Martin Milanič;James Orlin;Gábor Rudolf
  • 通讯作者:
    Gábor Rudolf

James Orlin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Orlin', 18)}}的其他基金

A Grammar-Based Approach to Dynamic Programming for Combinatorial Optimization
基于语法的组合优化动态规划方法
  • 批准号:
    0620189
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Hub Based Routing of Highly Variable Traffic
基于集线器的高度可变流量路由
  • 批准号:
    0521016
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: GOALI: New Directions in Very Large-Scale Neighborhood Search
合作研究:GOALI:超大规模邻域搜索的新方向
  • 批准号:
    0217123
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Cyclic Exchange Neighborhood Search and the Other Very Large Scale Neighborhood Search Techniques
循环交换邻域搜索和其他超大规模邻域搜索技术
  • 批准号:
    9820998
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
SGER: The Theory, Algorithms, and Applications of Network Flows Integrated with the World Wide Web
SGER:与万维网集成的网络流的理论、算法和应用
  • 批准号:
    9810359
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
New Directions in Network Flows
网络流的新方向
  • 批准号:
    8921835
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Programming Modeling Systems in a Database Environment: Collaborative Research with Boston University
数据库环境中的数学编程建模系统:与波士顿大学的合作研究
  • 批准号:
    8822004
  • 财政年份:
    1989
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Presidential Young Investigators Award: Combinatorial Optimization Problems
总统青年研究者奖:组合优化问题
  • 批准号:
    8451517
  • 财政年份:
    1985
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Research Initiation: Dynamic/Periodic Optimization Models
研究启动:动态/周期性优化模型
  • 批准号:
    8205022
  • 财政年份:
    1982
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

A Study on Exact Optimal Solutions for Subgroup Identification Based on Discrete Structure Processing
基于离散结构处理的子群辨识精确最优解研究
  • 批准号:
    23K11023
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
revAIsor: Revise AI Solutions for Optimal Results
revAIsor:修改人工智能解决方案以获得最佳结果
  • 批准号:
    10075158
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant for R&D
Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
  • 批准号:
    RGPIN-2020-05710
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Improved Numerical Methods for Solving Optimal Control Problems with Nonsmooth and Singular Solutions
解决具有非光滑和奇异解的最优控制问题的改进数值方法
  • 批准号:
    2031213
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
  • 批准号:
    RGPIN-2020-05710
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
  • 批准号:
    RGPIN-2020-05710
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Multi optimal Solutions for Energy Storage Systems
储能系统多最优解
  • 批准号:
    104426
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Study on sustainable and optimal solutions of ecosystem services provided by Sekampung watershed, Indonesia
印度尼西亚Sekampung流域提供的生态系统服务可持续和最优解决方案研究
  • 批准号:
    17H01915
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Optimal and robust combination of energy storage systems for massive integration of renewable energy - a focus on hydropower/hydrostorage solutions
用于大规模整合可再生能源的储能系统的最佳和稳健组合 - 专注于水电/水力存储解决方案
  • 批准号:
    351135640
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Optimal Operation of Irrigation Schemes Based on Viscosity Solutions of Partial Differential Equations
基于偏微分方程粘度解的灌溉方案优化运行
  • 批准号:
    16KT0018
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了