Collaborative Research: Inference, Analysis and Assessment in Simulation Optimization

协作研究:仿真优化中的推理、分析和评估

基本信息

项目摘要

This grant proposes three main areas of work on simulation optimization (SO) problems, which are optimization problems where the objective function and constraints involved can only be observed through a stochastic simulation. First, many SO problems possess structure such as convexity or unimodality that, if detected, can improve one?s understanding of the problem itself, and be exploited in selecting solution algorithms. Numerical methods will be developed to detect such structure. Second, performance measures, and methods for efficiently computing them, will be developed to enable theoretically sound comparisons of the performance of SO algorithms on test problems. Third, a testbed of SO problems will be developed.If awarded, the ability to numerically detect problem structure will greatly improve understanding of one?s problem formulations, and allow greater use of specialized algorithms that exploit structure. This could also lead to users formulating problems to adhere to those structures, with the result that many new subclasses of SO problems might be created. The testbed, along with appropriate performance measures, should help to encourage algorithm comparisons and development. We might then be able to tackle far larger SO problems than is possible today. The results of the research will find application in areas such as emergency services, transportation logistics, supply chain management, revenue management and potentially many other fields.
该补助金提出了模拟优化(SO)问题的三个主要工作领域,这些问题是目标函数和约束条件只能通过随机模拟来观察的优化问题。首先,许多SO问题具有结构,如凸性或单峰性,如果检测到,可以改善?的理解的问题本身,并利用在选择解决方案的算法。将开发数值方法来检测这种结构。其次,性能指标,并有效地计算它们的方法,将开发,使理论上健全的SO算法的性能测试问题的比较。第三,将开发一个SO问题的测试平台。如果获奖,数字检测问题结构的能力将大大提高对一个?的问题公式,并允许更多地使用专门的算法,利用结构。这也可能导致用户制定的问题,坚持这些结构,其结果是,许多新的子类SO问题可能会被创建。测试平台,沿着适当的性能测量,应该有助于鼓励算法的比较和开发。到那时,我们也许能够解决比今天可能解决的更大的SO问题。 研究结果将在应急服务、运输物流、供应链管理、收入管理等领域得到应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raghu Pasupathy其他文献

Raghu Pasupathy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raghu Pasupathy', 18)}}的其他基金

Collaborative Research: A Framework for Evaluation, Approximation, and Optimization of Time-Dependent Stochastic Service System Models having Deterministic/Scheduled Interventions
协作研究:具有确定性/预定干预的时间相关随机服务系统模型的评估、近似和优化框架
  • 批准号:
    1538050
  • 财政年份:
    2015
  • 资助金额:
    $ 6.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Design Principles for Parallel Simulation Optimization
协作研究:并行仿真优化的设计原理
  • 批准号:
    1200162
  • 财政年份:
    2012
  • 资助金额:
    $ 6.55万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 6.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 6.55万
  • 项目类别:
    Continuing Grant
Collaborative Research: Non-Parametric Inference of Temporal Data
合作研究:时态数据的非参数推理
  • 批准号:
    2311249
  • 财政年份:
    2023
  • 资助金额:
    $ 6.55万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 6.55万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: MEDIUM: General and Scalable Pluggable Type Inference
合作研究:SHF:MEDIUM:通用且可扩展的可插入类型推理
  • 批准号:
    2312263
  • 财政年份:
    2023
  • 资助金额:
    $ 6.55万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 6.55万
  • 项目类别:
    Standard Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324490
  • 财政年份:
    2023
  • 资助金额:
    $ 6.55万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324489
  • 财政年份:
    2023
  • 资助金额:
    $ 6.55万
  • 项目类别:
    Continuing Grant
Collaborative Research: Non-Parametric Inference of Temporal Data
合作研究:时态数据的非参数推理
  • 批准号:
    2311251
  • 财政年份:
    2023
  • 资助金额:
    $ 6.55万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312502
  • 财政年份:
    2023
  • 资助金额:
    $ 6.55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了