SCI: Collaborative Research: DAPLDS - a Dynamically Adaptive Protein-Ligand Docking System based on Multi-Scale Modeling
SCI:协作研究:DAPLDS - 基于多尺度建模的动态自适应蛋白质配体对接系统
基本信息
- 批准号:0802650
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2009-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The DAPLDS or Dynamically Adaptive Protein-Ligand Docking System project involves collaboration among the University of Texas, El Paso, The Scripps Research Institute (TSRI), and the University of California, Berkeley. This project, through implementation and use of a cybertool, DAPLDS, that enables adaptive multi-scale modeling in a global computing environment (i.e., distributed, heterogeneous computing environment using "volunteer" PC computers), will further knowledge of the atomic details of protein-ligand interactions and, by doing so, will accelerate the discovery of novel pharmaceuticals. The goals of the project are: (1) to explore the multi-scale nature of algorithmic adaptations in protein-ligand docking and (2) to develop cyber infrastructures based on computational methods and models that efficiently accommodate these adaptations.The intellectual merit of the project derives from small molecules, called ligands, which play an essential role in turning protein functions on or off, or in providing substrates for chemical reactions catalyzed by enzymes. Knowledge of the atomic level details of the protein-ligand docking is a valuable resource in the development of novel pharmaceuticals. The docking process depends on the characteristics of the protein-ligand complex involved and given a certain complex, the characterization and modeling of the docking process can affect both solution accuracy and model execution time. Based on characteristics of the protein-ligand conformations and the availability and reliability of computational resources, DAPLDS adapts, when appropriate, the model and/or the computational system to optimize model accuracy and time to solution. The multi-scale modeling adaptation in DAPLDS comprises at least three spanning scales: (1) protein-ligand representation spanning scale from rigid to flexible representation of protein-ligand interactions, (2) solvent representation spanning scale from less accurate to more accurate modeling of solvent treatment, and (3) sampling strategy spanning scale from fixed to adaptive sampling of the protein-ligand docking space.Broader Impact: DAPLDS applies multi-scale modeling to the search for putative drugs and drug leads. Our project changes the way in which grand challenges are approached by implementing an adaptive cybertool that scales beyond the protein-ligand docking application, e.g., this tool can be adapted and used for protein folding and protein structure prediction. Moreover, the use of public computing resources promotes and disseminates science research and science knowledge among the users of PCs involved in this effort.
DAPLDS或动态自适应蛋白质-配体对接系统项目涉及德克萨斯大学埃尔帕索分校、斯克里普斯研究所(TSRI)和加州大学伯克利分校之间的合作。这个项目,通过实施和使用一个网络工具,DAPLDS,使自适应多尺度建模在全球计算环境(即,使用“志愿者”PC计算机的分布式异构计算环境)将进一步了解蛋白质-配体相互作用的原子细节,并且通过这样做,将加速新药物的发现。该项目的目标是:(1)探索蛋白质-配体对接中算法适应性的多尺度性质;(2)基于有效适应这些适应性的计算方法和模型开发网络基础设施。该项目的智力价值来自于小分子,称为配体,它在开启或关闭蛋白质功能方面发挥着重要作用,或为酶催化的化学反应提供底物。蛋白质-配体对接的原子水平细节的知识是开发新药物的宝贵资源。对接过程取决于所涉及的蛋白质-配体复合物的特性,并且给定一定的复合物,对接过程的表征和建模可以影响解的准确性和模型执行时间。基于蛋白质-配体构象的特征以及计算资源的可用性和可靠性,DAPLDS在适当时调整模型和/或计算系统以优化模型精度和求解时间。DAPLDS中的多尺度建模适配包括至少三个跨越尺度:(1)蛋白质-配体表示跨越尺度,从蛋白质-配体相互作用的刚性表示到柔性表示,(2)溶剂表示跨越尺度,从溶剂处理的较不准确建模到更准确建模,以及(3)采样策略跨越尺度,从蛋白质-配体对接空间的固定采样到自适应采样。DAPLDS应用多尺度建模来搜索推定的药物和药物线索。我们的项目通过实施一种自适应的网络工具来改变巨大挑战的方式,该工具可以扩展到蛋白质-配体对接应用之外,例如,该工具可适用于蛋白质折叠和蛋白质结构预测。此外,公共计算资源的使用促进了科学研究,并在参与这项工作的个人电脑用户中传播了科学知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michela Taufer其他文献
Enhancing Scientific Research with FAIR Digital Objects in the National Science Data Fabric
利用国家科学数据结构中的 FAIR 数字对象加强科学研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Michela Taufer;Heberth Martinez;Jakob Luettgau;Lauren Whitnah;G. Scorzelli;P. Newell;Aashish Panta;P. Bremer;Douglas Fils;Christine R. Kirkpatrick;V. Pascucci;Kathryn Mohror;J. Shalf - 通讯作者:
J. Shalf
Integrating FAIR Digital Objects (FDOs) into the National Science Data Fabric (NSDF) to Revolutionize Dataflows for Scientific Discovery
将 FAIR 数字对象 (FDO) 集成到国家科学数据结构 (NSDF) 中,彻底改变科学发现的数据流
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Michela Taufer;Heberth Martinez;Jakob Luettgau;Lauren Whitnah;†. GiorgioScorzelli;†. PaniaNewel;Aashish Panta;Timo Bremer;§. DougFils;¶. ChristineR.Kirkpatrick;Nina McCurdy;V. Pascucci;U. Knoxville;†. U.Utah;R. LLNL ‡;Research Center - 通讯作者:
Research Center
Michela Taufer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michela Taufer', 18)}}的其他基金
EAGER: A Comprehensive Approach for Generating, Sharing, Searching, and Using High-Resolution Terrain Parameters
EAGER:生成、共享、搜索和使用高分辨率地形参数的综合方法
- 批准号:
2334945 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Model-driven Design and Optimization of Dataflows for Scientific Applications
协作研究:SHF:小型:科学应用数据流的模型驱动设计和优化
- 批准号:
2331152 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
SHF: Small: Methods, Workflows, and Data Commons for Reducing Training Costs in Neural Architecture Search on High-Performance Computing Platforms
SHF:小型:降低高性能计算平台上神经架构搜索训练成本的方法、工作流程和数据共享
- 批准号:
2223704 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Elements: SENSORY: Software Ecosystem for kNowledge diScOveRY - a data-driven framework for soil moisture applications
协作研究:要素:SENSORY:知识发现的软件生态系统 - 土壤湿度应用的数据驱动框架
- 批准号:
2103845 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Performance Scalability, Trust, and Reproducibility: A Community Roadmap to Robust Science in High-throughput Applications
协作研究:PPoSS:规划:性能可扩展性、信任和可重复性:高通量应用中稳健科学的社区路线图
- 批准号:
2028923 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: EAGER: Advancing Reproducibility in Multi-Messenger Astrophysics
合作研究:EAGER:提高多信使天体物理学的可重复性
- 批准号:
2041977 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: ANACIN-X: Analysis and modeling of Nondeterminism and Associated Costs in eXtreme scale applications
SHF:中:协作研究:ANACIN-X:极端规模应用中的非确定性和相关成本的分析和建模
- 批准号:
1900888 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative: EAGER: Exploring and Advancing the State of the Art in Robust Science in Gravitational Wave Physics
合作:EAGER:探索和推进引力波物理学稳健科学的最新技术
- 批准号:
1841399 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative: EAGER: Exploring and Advancing the State of the Art in Robust Science in Gravitational Wave Physics
合作:EAGER:探索和推进引力波物理学稳健科学的最新技术
- 批准号:
1823372 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
SHF:Medium:Collaborative Research:A comprehensive methodology to pursue reproducible accuracy in ensemble scientific simulations on multi- and many-core platforms
SHF:中:协作研究:在多核和众核平台上追求集合科学模拟的可重复精度的综合方法
- 批准号:
1841552 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: SCH: Smart Health & Biomedical Res in the Era of AI and Adv Data Sci PIs Meeting 2022: Smart Health through the Life Course
合作研究:SCH:智能健康
- 批准号:
2232232 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SCH: Smart Health & Biomedical Res in the Era of AI and Adv Data Sci PIs Meeting 2022: Smart Health through the Life Course
合作研究:SCH:智能健康
- 批准号:
2232237 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
SCI: Collaborative Research: DAPLDS - a Dynamically Adaptive Protein-Ligand Docking System based on Multi-Scale Modeling
SCI:协作研究:DAPLDS - 基于多尺度建模的动态自适应蛋白质配体对接系统
- 批准号:
0836458 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
SCI: Collaborative Research: EPIC - Engaging People in Cyberinfrastructure
SCI:协作研究:EPIC - 让人们参与网络基础设施
- 批准号:
0520146 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
SCI: Collaborative Research: DAPLDS - a Dynamically Adaptive Protein-Ligand Docking System based on Multi-Scale Modeling
SCI:协作研究:DAPLDS - 基于多尺度建模的动态自适应蛋白质配体对接系统
- 批准号:
0506316 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
SCI: SGER: Collaborative Research: Experimentation with TEEVE Tele-Immersive Infrastructure
SCI:SGER:协作研究:TEEVE 远程沉浸式基础设施实验
- 批准号:
0549242 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
SCI: SGER: Collaborative Research: Experimentation with TEEVE Tele-Immersive Infrastructure
SCI:SGER:协作研究:TEEVE 远程沉浸式基础设施实验
- 批准号:
0549231 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
SCI: Collaborative Research: The NSF Cyberinfrastructure Evaluation Center
SCI:合作研究:NSF 网络基础设施评估中心
- 批准号:
0516162 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
SCI: Collaborative Research: DAPLDS - a Dynamically Adaptive Protein-Ligand Docking System based on Multi-Scale Modeling
SCI:协作研究:DAPLDS - 基于多尺度建模的动态自适应蛋白质配体对接系统
- 批准号:
0506411 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
SCI: Collaborative Research: DAPLDS - a Dynamically Adaptive Protein-Ligand Docking System based on Multi-Scale Modeling
SCI:协作研究:DAPLDS - 基于多尺度建模的动态自适应蛋白质配体对接系统
- 批准号:
0506429 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant