GEM: Can Global Magnetohydrodynamics (MHD) Codes Model Magnetic Reconnection in the High Lundquist Number Limit?

GEM:全球磁流体动力学 (MHD) 代码能否模拟高伦德奎斯特数限制下的磁重联?

基本信息

  • 批准号:
    0802727
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-06-01 至 2011-05-31
  • 项目状态:
    已结题

项目摘要

One of the long term goals of NSF's Geospace Environment Modeling (GEM) program is the construction of a Geospace General Circulation Model (GGCM), a comprehensive and predictively powerful numerical model of geospace. One popular approach to GGCM design consists of using a global magnetohydrodynamics (MHD) code as the computational "spine" of the model, including additional physics where needed (e.g., by coupling the global MHD code to a kinetic model of the ring current). Despite its successes, however, the MHD spine approach suffers from a number of well known deficiencies, the most serious of which is the inability of MHD to model the kinetic processes which are thought to play an essential role in magnetic reconnection. In order to achieve fast reconnection in global MHD codes, modelers usually resort to ad hoc localized, numerical or current dependent resistivities, and it is not clear how the reconnection dynamics depends on the resistivity or whether the results even converge as the numerical resistivity decreases with increasing grid resolution. Despite the fundamental role reconnection plays in driving magnetospheric dynamics, the reconnection time scale problem hasn't received much attention by global MHD modelers. The issue is often dismissed with appeals to the "Axford Conjecture" which states that the reconnection rate is determined by external boundary conditions, with the diffusion region adjusting to accommodate these conditions. There is now compelling evidence that the Axford Conjecture does not apply at the dayside magnetopause and it has never been systematically tested in global MHD simulations of magnetotail reconnection. This research program will attack the problem of how the generation and dynamics of global MHD storms and substorms depend on the resistivity. It will address the following issues: 1) How does the physics of magnetopause reconnection in global MHD simulations depend on the resistivity model during strong, sustained southward IMF solar wind driving (i.e., conditions which typically produce strong storms)? 2) Can global MHD simulations produce storms and substorms in the high Lundquist number limit? 3) How does the storm-substorm relationship depend on the resistivity model? The research will combine a straightforward parameter study with event study model/data comparisons: we will run the OpenGGCM global MHD code with coronal mass ejection solar wind boundary conditions, varying both the solar wind parameters as well as the resistivity model. The primary new result will be a definitive test of the Axford Conjecture in the context of magnetic storm and substorm dynamics.The analysis of the storm/substorm relationship will require the development of a Vlasov test-particle code (which will solve the Vlasov equation in prescribed electric and magnetic fields output from OpenGGCM). This code will be developed primarily by a graduate student at the University of New Hampshire (UNH).
美国国家科学基金会的地球空间环境建模(GEM)计划的长期目标之一是建立一个地球空间环流模型(GGCM),一个全面的和预测功能强大的地球空间数值模型。GGCM设计的一种流行方法包括使用全局磁流体动力学(MHD)代码作为模型的计算“主干”,包括需要的额外物理学(例如,通过将全局MHD代码耦合到环电流的动力学模型)。尽管它的成功,但是,MHD脊柱的方法遭受了一些众所周知的缺陷,其中最严重的是MHD的动力学过程被认为是在磁重联中发挥重要作用的模型的能力。为了实现快速重联在全球MHD代码,建模者通常求助于特设本地化,数值或电流依赖的电阻率,它是不清楚的重联动力学如何取决于电阻率或结果是否收敛,甚至作为数值电阻率随着网格分辨率的增加而降低。尽管重联在驱动磁层动力学中起着重要的作用,但重联的时间尺度问题还没有得到全球MHD建模者的重视。这个问题往往被驳回上诉的“阿克斯福德猜想”,其中指出,重联率是由外部边界条件,与扩散区调整,以适应这些条件。现在有令人信服的证据表明,阿克斯福德猜想并不适用于昼侧磁层顶,它从来没有在全球磁流体动力学模拟磁尾重联系统测试。该研究计划将解决全球MHD风暴和亚暴的生成和动力学如何依赖于电阻率的问题。它将解决以下问题:1)在全球MHD模拟中,磁层顶重连的物理学如何依赖于强的、持续的向南IMF太阳风驱动期间的电阻率模型(即,通常会产生强烈风暴的条件)。2)全球MHD模拟能产生高Lundquist数极限的风暴和亚暴吗?3)风暴-亚暴关系如何依赖于电阻率模型?该研究将结合联合收割机一个简单的参数研究与事件研究模型/数据比较:我们将运行OpenGGCM全球MHD代码与日冕物质抛射太阳风边界条件,改变太阳风参数以及电阻率模型。主要的新结果将是在磁暴和亚暴动力学的背景下对阿克斯福德猜想的确定性测试。风暴/亚暴关系的分析将需要开发一个弗拉索夫测试粒子代码(它将在OpenGGCM输出的指定电场和磁场中求解弗拉索夫方程)。该代码将主要由新罕布什尔州(UNH)大学的研究生开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amitava Bhattacharjee其他文献

Statistical simulation of the magnetorotational dynamo.
磁旋转发电机的统计模拟。
  • DOI:
    10.1103/physrevlett.114.085002
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Jonathan Squire;Amitava Bhattacharjee
  • 通讯作者:
    Amitava Bhattacharjee
Plasmoid-mediated reconnection during nonlinear peeling–ballooning edge-localized modes
非线性剥离-气球边缘局部模式期间等离子体介导的重连接
  • DOI:
    10.1088/1741-4326/ad0062
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    F. Ebrahimi;Amitava Bhattacharjee
  • 通讯作者:
    Amitava Bhattacharjee
Overview of NSTX Upgrade initial results and modelling highlights
NSTX Upgrade 初步结果和建模亮点概述
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Menard;Jean P. Allain;D. Battaglia;F. Bedoya;R. Bell;Elena Belova;J. Berkery;M. Boyer;N. Crocker;A. Diallo;F. Ebrahimi;Nathaniel Ferraro;E. Fredrickson;H. Frerichs;S. Gerhardt;N. Gorelenkov;W. Guttenfelder;W. Heidbrink;R. Kaita;S. Kaye;D. Kriete;S. Kubota;B. LeBlanc;D. Liu;R. Lunsford;D. Mueller;Clayton E. Myers;M. Ono;Jinseop Park;Mario Podesta;R. Raman;Matthew Reinke;Y. Ren;S. Sabbagh;O. Schmitz;F. Scotti;Y. Sechrest;C. H. Skinner;D. R. Smith;V. Soukhanovskii;T. Stoltzfus;H. Yuh;Zhirui Wang;I. Waters;J. Ahn;R. Andre;R. Barchfeld;P. Beiersdorfer;N. Bertelli;Amitava Bhattacharjee;D. Brennan;R. Buttery;A. Capece;G. Canal;John Canik;C. S. Chang;D. Darrow;L. Delgado;C. Domier;S. Ethier;T. Evans;J. Ferron;M. Finkenthal;R. Fonck;K. Gan;D. Gates;I. Goumiri;T. Gray;J. Hosea;D. Humphreys;T. Jarboe;S. Jardin;Michael Jaworski;B. Koel;E. Kolemen;S. Ku;R. L. Haye;F. Levinton;N. C. Luhmann;R. Maingi;R. Maqueda;G. Mckee;E. Meier;J. Myra;R. Perkins;F. Poli;T. Rhodes;J. Riquezes;C. Rowley;D. Russell;Eugenio Schuster;B. Stratton;D. Stutman;Gary Taylor;K. Tritz;W. Wang;B. Wirth;S. Zweben
  • 通讯作者:
    S. Zweben
Helicity-flux-driven α effect in laboratory and astrophysical plasmas.
实验室和天体物理等离子体中螺旋通量驱动的 α 效应。
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    F. Ebrahimi;Amitava Bhattacharjee
  • 通讯作者:
    Amitava Bhattacharjee
Kolmogorov versus Iroshnikov-Kraichnan spectra: Consequences for ion heating in the solar wind
柯尔莫哥洛夫光谱与 Iroshnikov-Kraichnan 光谱:太阳风中离子加热的后果
  • DOI:
    10.1029/2009ja014377
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Ng;Amitava Bhattacharjee;D. Munsi;P. Isenberg;Charles W. Smith
  • 通讯作者:
    Charles W. Smith

Amitava Bhattacharjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amitava Bhattacharjee', 18)}}的其他基金

WoU-MMA: Role of the Dynamo Effect in Neutron Star Mergers
WoU-MMA:发电机效应在中子星合并中的作用
  • 批准号:
    2206756
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: A Software Ecosystem for Plasma Science and Space Weather Applications
合作研究:框架:等离子体科学和空间天气应用的软件生态系统
  • 批准号:
    2209471
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Integration of Extended Magnetohydrodynamic (MHD) and Kinetic Effects in Global Magnetosphere Models
合作研究:全球磁层模型中扩展磁流体动力学 (MHD) 和动力学效应的集成
  • 批准号:
    1552142
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Integration of Extended Magnetohydrodynamic (MHD) and Kinetic Effects in Global Magnetosphere Models
合作研究:全球磁层模型中扩展磁流体动力学 (MHD) 和动力学效应的集成
  • 批准号:
    1338944
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SHINE: Instability of Large-Scale Current Sheets, Plasmoid Formation, and Particle Acceleration in Coronal Plasmas
SHINE:大尺度电流片的不稳定性、等离子体团的形成以及日冕等离子体中的粒子加速
  • 批准号:
    1331784
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Integration of Extended Magnetohydrodynamic (MHD) and Kinetic Effects in Global Magnetosphere Models
合作研究:全球磁层模型中扩展磁流体动力学 (MHD) 和动力学效应的集成
  • 批准号:
    1338863
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SHINE: Instability of Large-Scale Current Sheets, Plasmoid Formation, and Particle Acceleration in Coronal Plasmas
SHINE:大尺度电流片的不稳定性、等离子体团的形成以及日冕等离子体中的粒子加速
  • 批准号:
    0962698
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Stability of Thin Current Sheet in the Magnetotail: Theory, Simulations, and Observations
磁尾中薄电流片的稳定性:理论、模拟和观察
  • 批准号:
    0903915
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Global Simulations of Substorm Trigger with GGCM: Synergistic Coupling of Magnetic Reconnection and Ballooning-Interchange Instabilities in the Magnetotail
合作研究:使用 GGCM 对亚暴触发进行全局模拟:磁尾磁重联和气球交换不稳定性的协同耦合
  • 批准号:
    0543202
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Stability of Thin Current Sheets in the Earth's Magnetotail: Theory, Simulations, and Observations
地球磁尾中薄电流片的稳定性:理论、模拟和观测
  • 批准号:
    0425806
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

磁层亚暴触发过程的全球(global)MHD-Hall数值模拟
  • 批准号:
    40536030
  • 批准年份:
    2005
  • 资助金额:
    120.0 万元
  • 项目类别:
    重点项目

相似海外基金

CAREER: Balancing the global alkalinity cycle by improving models of river chemistry
职业:通过改进河流化学模型平衡全球碱度循环
  • 批准号:
    2338139
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: REU Site Mystic Aquarium: Plankton to Whales: Consequences of Global Change within Marine Ecosystems
合作研究:REU 站点神秘水族馆:浮游生物到鲸鱼:海洋生态系统内全球变化的后果
  • 批准号:
    2349354
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Conference: Global Bioinformatics Education Summit 2024 — Energizing Communities to Power the Bioeconomy Workforce
会议:2024 年全球生物信息学教育峰会 — 激励社区为生物经济劳动力提供动力
  • 批准号:
    2421267
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Winds of Change: Exploring the Meteorological Drivers of Global Dust
变革之风:探索全球沙尘的气象驱动因素
  • 批准号:
    2333139
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
  • 批准号:
    2341858
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
  • 批准号:
    2341859
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The global impact of high summer temperature on heatstroke mortality in the current climate scenario
当前气候情景下夏季高温对中暑死亡率的全球影响
  • 批准号:
    24K13527
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Implications of Global Economic Forces for Domestic Monetary Policy
全球经济力量对国内货币政策的影响
  • 批准号:
    DP240100970
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Global Road Damage Detection with privacy-preserved collaboration
通过保护隐私的协作进行全球道路损坏检测
  • 批准号:
    24K17366
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Mechanism and Stability of Global Imbalances
全球失衡的机制与稳定性
  • 批准号:
    23K22120
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了