The Geometric Background of biHamiltonian Systems

双哈密顿系统的几何背景

基本信息

  • 批准号:
    0804541
  • 负责人:
  • 金额:
    $ 15.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS-0804541Principal Investigator: Gloria Mari-BeffaIn this project the PI proposes to research the existence ofgeometric realizations for nonlinear biHamiltonian PDEs and theimplications of this existence for the biHamiltonian system andfor the realizing manifold alike. In particular she intends todescribe possible realizing manifolds and to link their geometryto the type of system they realize. In the past the PI hasstudied how biHamiltonian structures are generated by thegeometry of curves in realizing manifolds. She also studiedgeometric realizations of equations of KdV type in HermitianSymmetric manifolds, linking the projective character ofdifferential invariants to equations of KdV-type. In this projectshe proposes to deepen this relation and to expand it toparabolic manifolds. In joint work with M. Eastwood she will beusing tools in classical differential geometry to find projectivestructures on flows. Resolving this differential geometry problemwill very likely create geometric realizations of KdV-type inparabolic manifolds. She will also investigate the possibility ofa similar connection in other geometries, for example that ofSchrödinger, mKdV and sine-Gordon flows to Riemanniangeometry. Finally, in joint work with Calini and Ivey, the PIwill study geometric and topological properties of solutions torealizations of soliton equations, in particular thosecorresponding to finite-gap solutions (periodic case). The studywill try to link properties of these solutions to their spectralparameter.Setting an appropriate geometric background is often afundamental step in the resolution of a problem. A choice ofgeometry establishes the properties and laws we wish to keepunchanged: Relativity (with Lorentzian geometry setting theinteraction between space and time) and computer imaging (usingprojective geometry when 3D perspective needs to be preserved)are some of the best-known examples. But nowadays many engineersand physicists, including some groups working on data collection,consider a basic knowledge of differential geometry to befundamental. Geometric thought is commonplace, as often findingthe right choice of geometry for a problem is an initial step inits resolution - it all depends on how (or with which geometriceyes) you look at it -. BiHamiltonian nonlinear equations arevery rich in structure and they are often used to model differenttypes of phenomena. Their rich structure allows us to find agreat deal of information about the system they model and topredict behavior. The best-known completely integrable systemsare bi-Hamiltonian, and their solutions predict the behavior offluids, from water waves in shallow water to the trailingvortices behind the wing tips of an airplane. These phenomena donot, in principle, exist within any given geometricbackground. When we find geometric realizations for a completelyintegrable system we gain information in two different ways: 1)We learn that the behavior of these phenomena can be visualizedwithin a certain geometry, and we learn how to visualize it. Inparticular, the same phenomena can be described in more than onegeometry; 2) We learn that some geometries are hosts to phenomenathat were not known to exist in that context before. For example,by linking projective and centro-equi-affine geometries, we canfind evolutions of star-shaped curves that behave like solitarywaves. The better we understand the relation between these twoapparently unrelated subjects, the more we can transfer ourextensive geometric knowledge, their connections and properties,to the understanding of completely integrable systems. Andvice-versa.
AbstractAward:DMS-0804541首席研究员:格洛丽亚Mari-Befa在这个项目中,PI提出研究非线性双哈密顿偏微分方程几何实现的存在性,以及这种存在性对双哈密顿系统和实现流形的影响。特别是,她打算描述可能实现流形,并将其几何连接到他们实现的系统类型.在过去的PI已经研究如何双哈密顿结构产生的几何形状的曲线实现流形。她还研究了几何实现方程的KdV型厄米特对称流形,连接投影字符微分不变量方程的KdV型。在这个项目中,她建议深化这种关系,并将其扩展到抛物流形.在与M。她将使用经典微分几何中的工具来寻找流上的投影结构。解决这个微分几何问题将很有可能创建KdV型抛物流形的几何实现。她还将调查的可能性ofa类似的连接在其他几何形状,例如,ofSchrödinger,mKdV和正弦戈登流黎曼几何。最后,在与Calini和Ivey的联合工作中,PI将研究孤子方程实现的解的几何和拓扑性质,特别是那些对应于有限间隙解(周期性情况)的解。本研究将试图将这些解的性质与它们的谱参数联系起来。设置适当的几何背景往往是解决问题的基础步骤。 几何学的选择建立了我们希望保持不变的性质和定律:相对论(洛伦兹几何学设置了空间和时间之间的相互作用)和计算机成像(当需要保留3D透视时使用投影几何学)是一些最著名的例子。但是现在,许多工程师和物理学家,包括一些从事数据收集的团体,认为微分几何的基础知识是基础。几何思维是司空见惯的,因为通常为一个问题找到正确的几何选择是解决问题的第一步-这一切都取决于你如何(或用什么几何眼睛)看待它。双Hamilton非线性方程具有丰富的结构,常被用来模拟各种现象.它们丰富的结构使我们能够找到大量关于它们所建模的系统的信息并预测其行为。最著名的完全可积系统是双哈密顿系统,它们的解预测了流体的行为,从浅水中的水波到飞机翼尖后面的尾涡。 原则上,这些现象不存在于任何给定的几何背景中。当我们找到一个完全可积系统的几何实现时,我们以两种不同的方式获得信息:1)我们了解到这些现象的行为可以在某种几何中可视化,并且我们学习如何可视化它。特别是,相同的现象可以在不止一种几何中描述; 2)我们了解到某些几何是以前不知道存在的现象的宿主。例如,通过将射影几何和中心等仿射几何联系起来,我们可以找到行为类似孤立波的星形曲线的演化。我们对这两个看似无关的学科之间的关系理解得越好,我们就越能将我们广泛的几何知识、它们之间的联系和性质转移到对完全可积系统的理解上。反之亦然。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gloria Mari-Beffa其他文献

Gloria Mari-Beffa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gloria Mari-Beffa', 18)}}的其他基金

Moving Frames on Lattices and Applications
格子上的移动框架及其应用
  • 批准号:
    1405722
  • 财政年份:
    2014
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Standard Grant

相似海外基金

Re-evaluating Minority Shareholding in Competition Law Against the Background of Horizontal Shareholding by Investors: Lessons Drawn From Fintech and E-Commerce Startups in Asia
投资者横向持股背景下重新评估竞争法中的少数股权:亚洲金融科技和电子商务初创企业的经验教训
  • 批准号:
    23K20574
  • 财政年份:
    2024
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Cryogenic Experimental Laboratory for Low-background Australian Research
澳大利亚低本底研究低温实验实验室
  • 批准号:
    LE240100044
  • 财政年份:
    2024
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Collaborative Research: An Empirical Blueprint for the Gravitational-Wave Background
合作研究:引力波背景的经验蓝图
  • 批准号:
    2414468
  • 财政年份:
    2024
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Standard Grant
Conference: Rethinking how language background is described in academia and beyond
会议:重新思考学术界及其他领域如何描述语言背景
  • 批准号:
    2335912
  • 财政年份:
    2024
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Standard Grant
Measurement of physiological load in online learning and verification of the effect of creating a background sound environment
在线学习生理负荷测量及背景音环境营造效果验证
  • 批准号:
    23K11370
  • 财政年份:
    2023
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Broadband background canceling using optical frequency comb and application
利用光学频率梳消除宽带背景及应用
  • 批准号:
    23H01875
  • 财政年份:
    2023
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
International research using big data for lifestyle disease, brain aging and genetic background
利用大数据研究生活方式疾病、大脑衰老和遗传背景的国际研究
  • 批准号:
    23K06843
  • 财政年份:
    2023
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Approaching the historical background and authorship of "Sakuteiki", the oldest landscape book, using historical methods
用历史方法探讨最古老的山水书《作庭记》的历史背景和作者
  • 批准号:
    23K13973
  • 财政年份:
    2023
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of nonlinear Raman approach for understanding the background of vibrational polaritons
开发非线性拉曼方法来理解振动极化子的背景
  • 批准号:
    23K17904
  • 财政年份:
    2023
  • 资助金额:
    $ 15.6万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Improving Quality of Care for Persons with Dementia in Nursing Homes – Evaluation of the National Background Check Program
提高疗养院痴呆症患者的护理质量 — 对国家背景调查计划的评估
  • 批准号:
    10662838
  • 财政年份:
    2023
  • 资助金额:
    $ 15.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了