Studies of the Exact Coherent States that control turbulence and transition to turbulence in shear flows

控制剪切流中的湍流和过渡到湍流的精确相干态的研究

基本信息

  • 批准号:
    0807349
  • 负责人:
  • 金额:
    $ 18.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

A primary goal of the research that is supported with this award is to develop an asymptotic theory for `lower branch coherent states', a recently discovered class of 3D traveling wave solutions of the Navier-Stokes equations for shear flows (plane Couette, channel and pipe flows). Numerical calculations reveal that these solutions are unstable but with very low dimensional unstable manifolds (1 or 2 dimensional) and that they control transition to turbulence. Numerical calculations also reveal that the solutions have a striking asymptotic structure involving a critical layer. An asymptotic theory is needed to clarify, solidify and extend the numerical results to large Reynolds number. Such an asymptotic theory would have interesting mathematical features and implications about the high Reynolds number limit of solutions to the Navier-Stokes equations because of the nonlinear self-interaction of a singular critical layer structure. This research project will continue to develop such a theory.A second aspect of this research program is to continue the numerical study of the various coherent states and their connection with turbulent flows. Parts of this research involve US and international collaborations, in particular with P. Cvitanovic, J. Gibson, D. Viswanath and M. Graham (USA), R. Kerswell (UK), G. Kawahara, S. Toh, S. Kida and M. Nagata (Japan) and B. Eckhardt (Germany).We have walked on the moon but we still do not understand flow of water down a pipe. For low speeds, the water flows in an orderly manner (`laminar flow'), but at higher speeds the flow becomes very disordered (`turbulent flow'). Turbulence is an ubiquitous fluid phenomenon that also occurs for flow of oil in pipelines, air around cars, airplanes and buildings, as well as in plasmas inside tokamaks, the sun and stars. The energetic and environmental effects of turbulence are major. Turbulent flows consume a lot more energy and mix things much better than laminar flows. Turbulence has been actively studied for over 120 years and is widely considered as the major unsolved problem of classical physics. A main emphasis of that research has been to developed semi-empirical models of turbulence for engineering calculations. These models are invariably based upon various presumptions about the nature of turbulence. This research program is one of an handful of pioneering programs around the world that have uncovered a series of previously unsuspected other possible states of fluid flow, intermediate between laminar and turbulent states. These new flow states consists of equilibria and periodic states that are unstable but appear to control onset of turbulence as well as fully developed turbulent flows. The discovery of these states forces a fundamental rethinking of the nature of turbulence. These discoveries were suggested and made possible by advances in experimental visualization methods as well as computers and computer calculation methods.
该奖项支持的研究的主要目标是发展“低分支相干态”的渐近理论,这是最近发现的一类用于剪切流(平面Couette,通道和管道流)的Navier-Stokes方程的三维行波解。数值计算表明,这些解是不稳定的,但具有非常低维的不稳定流形(一维或二维),并且它们控制着向湍流的过渡。数值计算还表明,解具有显著的涉及临界层的渐近结构。需要一个渐近理论来澄清、巩固和推广数值结果到大雷诺数。由于奇异临界层结构的非线性自相互作用,这种渐近理论将对Navier-Stokes方程解的高雷诺数极限具有有趣的数学特征和意义。这个研究项目将继续发展这样一个理论。本研究计划的第二个方面是继续对各种相干态及其与湍流的关系进行数值研究。部分研究涉及美国和国际合作,特别是P. Cvitanovic, J. Gibson, D. Viswanath和M. Graham(美国),R. Kerswell(英国),G. Kawahara, S. Toh, S. Kida和M. Nagata(日本)以及B. Eckhardt(德国)。我们已经在月球上行走了,但我们仍然不理解水管里的水流。在低速时,水以有序的方式流动(“层流”),但在高速时,水流变得非常无序(“湍流”)。湍流是一种无处不在的流体现象,它也发生在管道中的石油流动、汽车、飞机和建筑物周围的空气中,以及托卡马克内部的等离子体、太阳和恒星中。湍流的能量和环境影响是主要的。紊流比层流消耗更多的能量,混合效果也更好。湍流已被积极研究了120多年,被广泛认为是经典物理学中未解决的主要问题。该研究的主要重点是开发用于工程计算的湍流半经验模型。这些模型总是基于对湍流性质的各种假设。这个研究项目是世界上为数不多的开创性项目之一,这些项目已经发现了一系列以前未被怀疑的其他可能的流体流动状态,介于层流和湍流状态之间。这些新的流动状态包括不稳定的平衡状态和周期状态,它们似乎控制着湍流的开始以及完全发展的湍流。这些状态的发现迫使人们从根本上重新思考湍流的本质。这些发现是由实验可视化方法以及计算机和计算机计算方法的进步提出并使之成为可能的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fabian Waleffe其他文献

Dynamical characterization of Large祐cale Structures in Channel Flow Turbulence
通道流湍流中大型结构的动力学表征
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    板野智昭;藤定義;Fabian Waleffe;佐藤海;板野 智昭;S.C. Generalis;S.C.Generalis;Tomoaki Itano;板野智昭;板野智昭;板野智昭;板野智昭;Tomoaki Itano;Tomoaki ITANO;Sadayoshi Toh
  • 通讯作者:
    Sadayoshi Toh
New Equilibrium Couette States-The Hairpin Vortex Solut ion (HVS)
新平衡库埃特态-发夹涡解 (HVS)
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    板野智昭;藤定義;Fabian Waleffe;佐藤海;板野 智昭;S.C. Generalis
  • 通讯作者:
    S.C. Generalis
A Bifurcation Study f or Large祐cale Motion in Channel Flow
河道流中大尤卡勒运动的分岔研究
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    板野智昭;藤定義;Fabian Waleffe;佐藤海;板野 智昭;S.C. Generalis;S.C.Generalis;Tomoaki Itano;板野智昭;板野智昭;板野智昭;板野智昭;Tomoaki Itano
  • 通讯作者:
    Tomoaki Itano
小型低乱風洞の試作
小型低湍流风洞原型
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    板野智昭;藤定義;Fabian Waleffe;佐藤海;板野 智昭;S.C. Generalis;S.C.Generalis;Tomoaki Itano;板野智昭;板野智昭;板野智昭
  • 通讯作者:
    板野智昭
鉛直平板間の自然対流における乱流遷移と大規模秩序構造のかかわり
垂直板间自然对流湍流转捩与大尺度有序结构的关系
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    板野智昭;藤定義;Fabian Waleffe;佐藤海;板野 智昭;S.C. Generalis;S.C.Generalis;Tomoaki Itano;板野智昭;板野智昭;板野智昭;板野智昭;Tomoaki Itano;Tomoaki ITANO;Sadayoshi Toh;Sadayoshi TOH;板野智昭
  • 通讯作者:
    板野智昭

Fabian Waleffe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fabian Waleffe', 18)}}的其他基金

SCREMS: Multiscale Computing in Astrophysics, Geophysics, Hydrodynamics, Kinetic and Quantum Applications
SCREMS:天体物理学、地球物理学、流体动力学、动力学和量子应用中的多尺度计算
  • 批准号:
    0532085
  • 财政年份:
    2005
  • 资助金额:
    $ 18.38万
  • 项目类别:
    Standard Grant
Exact Coherent Structures and the Nature Shear Turbulence
精确相干结构和自然剪切湍流
  • 批准号:
    0204636
  • 财政年份:
    2002
  • 资助金额:
    $ 18.38万
  • 项目类别:
    Continuing Grant
Coherent Structures, Self-Sustaining Process and Bifurcations in Shear Flows
剪切流中的相干结构、自持过程和分岔
  • 批准号:
    9803685
  • 财政年份:
    1998
  • 资助金额:
    $ 18.38万
  • 项目类别:
    Standard Grant

相似国自然基金

发展基于Exact Muffin-Tin轨道的第一性原理量子输运方法
  • 批准号:
    11874265
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Stabilisation of exact coherent structures in fluid turbulence
流体湍流中精确相干结构的稳定性
  • 批准号:
    EP/S037055/2
  • 财政年份:
    2022
  • 资助金额:
    $ 18.38万
  • 项目类别:
    Research Grant
Exact Coherent Structures in Viscoelastic Turbulence
粘弹性湍流中的精确相干结构
  • 批准号:
    EP/V027247/1
  • 财政年份:
    2021
  • 资助金额:
    $ 18.38万
  • 项目类别:
    Research Grant
Stabilisation of exact coherent structures in fluid turbulence
流体湍流中精确相干结构的稳定性
  • 批准号:
    EP/S037055/1
  • 财政年份:
    2020
  • 资助金额:
    $ 18.38万
  • 项目类别:
    Research Grant
Exact coherent states in channel flow
通道流中的精确相干态
  • 批准号:
    18K03951
  • 财政年份:
    2018
  • 资助金额:
    $ 18.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exact coherent structures in shear flows
剪切流中的精确相干结构
  • 批准号:
    1943433
  • 财政年份:
    2017
  • 资助金额:
    $ 18.38万
  • 项目类别:
    Studentship
Application of exact coherent structures to transition and turbulence
精确相干结构在过渡和湍流中的应用
  • 批准号:
    DP170104703
  • 财政年份:
    2017
  • 资助金额:
    $ 18.38万
  • 项目类别:
    Discovery Projects
Superstructures and exact coherent states in the asymptotic suction boundary layer
渐进吸力边界层中的超结构和精确相干态
  • 批准号:
    316203992
  • 财政年份:
    2016
  • 资助金额:
    $ 18.38万
  • 项目类别:
    Priority Programmes
Laboratory Studies of Exact Coherent Structures in Wall Turbulence
壁湍流中精确相干结构的实验室研究
  • 批准号:
    0853691
  • 财政年份:
    2009
  • 资助金额:
    $ 18.38万
  • 项目类别:
    Standard Grant
Turbulent Drag Reduction in Polymer Solutions: Studies of the Interaction of Viscoelasticity and Exact Coherent States
聚合物溶液中的湍流减阻:粘弹性和精确相干态相互作用的研究
  • 批准号:
    0328325
  • 财政年份:
    2004
  • 资助金额:
    $ 18.38万
  • 项目类别:
    Continuing Grant
Exact Coherent Structures and the Nature Shear Turbulence
精确相干结构和自然剪切湍流
  • 批准号:
    0204636
  • 财政年份:
    2002
  • 资助金额:
    $ 18.38万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了