Practical Optimization Algorithms for Large-Scale Image and Data Processing
大规模图像和数据处理的实用优化算法
基本信息
- 批准号:0811188
- 负责人:
- 金额:$ 24.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-15 至 2012-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optimization algorithms are at the core of solving many problems in image and data processing, and dedicated algorithms are often critical in real-world applications. The principal investigator (PI) will conduct algorithmic research in two important areas: image deconvolution and compressive sensing, to develop enabling algorithms that make relevant methodologies practical for large-scale, real applications. For image deconvolution, the PI aims to develop optimization algorithms for total-variation-based models that are faster than existing algorithms by at least one or more order of magnitude. Preliminary studies have shown that this ambitious goal is well within grasp. The new compressive sensing(CS) methodologies make it possible to significantly reduce the number of measurements needed for reconstructing compressible data. The PI proposes to develop algorithms for important real-world applications of CS, and study random Kronecker-product measurement matrices that can drastically reduce data reconstruction complexity.MRI (magnetic resonance imaging) is a widely used medical imaging modality that creates an image from scanned data. A typical abdominal scan may take around 90 minutes. Recent progress in a new methodology called compressive sensing (CS) makes it possible to reduce this time to 30 minutes by scanning only one third of data, while maintaining good image quality. However, such a possibility can be realized only when fast algorithms are available to do real-time processing on incomplete data. This project is to develop and analyze such fast algorithms. Another class of fast algorithms to be investigated is for improving the clarity of fuzzy images. With such fast algorithms, for example, satellite or medical images can be better analyzed in a more timely fashion. The results of this project will impact applications ranging from information technology to biotechnology.
优化算法是解决图像和数据处理中许多问题的核心,而专用算法在实际应用中往往至关重要。首席研究员(PI)将在两个重要领域进行算法研究:图像反卷积和压缩感知,以开发使相关方法适用于大规模实际应用的算法。对于图像反卷积,PI旨在为基于总变化的模型开发优化算法,该算法比现有算法至少快一个或多个数量级。初步研究表明,这一雄心勃勃的目标完全可以实现。新的压缩感知(CS)方法可以显著减少重建可压缩数据所需的测量次数。PI建议为CS的重要现实应用开发算法,并研究随机克罗内克积测量矩阵,这可以大大降低数据重建的复杂性。MRI(磁共振成像)是一种广泛使用的医学成像方式,从扫描数据创建图像。一次典型的腹部扫描大约需要90分钟。最近,一种名为压缩感知(CS)的新方法取得了进展,可以通过只扫描三分之一的数据,将这段时间缩短到30分钟,同时保持良好的图像质量。然而,这种可能性只有在快速算法可以对不完整数据进行实时处理的情况下才能实现。这个项目就是开发和分析这样的快速算法。另一类要研究的快速算法是用于提高模糊图像的清晰度。例如,有了这样快速的算法,卫星图像或医学图像就可以更好、更及时地进行分析。该项目的成果将影响从信息技术到生物技术的各种应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yin Zhang其他文献
Very late thrombosis 12 years after bare metal stent deployment.
裸金属支架放置后 12 年发生极晚期血栓。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:6.1
- 作者:
Jihong Wang;Y. Qiao;Yin Zhang;Patricio Lopes Lao Edmundo;M. Salim;Changsheng Ma;Xuesi Wu - 通讯作者:
Xuesi Wu
Stochastic Radiation Radar High-Resolution Reconstruction Based on Interpulse Frequency Hopping Accumulation Method
基于脉冲间跳频累加法的随机辐射雷达高分辨率重建
- DOI:
10.1109/lgrs.2022.3213485 - 发表时间:
2022 - 期刊:
- 影响因子:4.8
- 作者:
Yin Zhang;Qianyang Qin;Meiting Liu;Deqing Mao;Yulin Huang;Jianyu Yang - 通讯作者:
Jianyu Yang
Eco-Environmental Quality Assessment Using the Remote Sensing Ecological Index in Suzhou City, China
中国苏州市生态环境质量遥感生态指数评价
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.9
- 作者:
Gang Fang;Renato Dan A. Pablo;Yin Zhang - 通讯作者:
Yin Zhang
A Target Detection Algorithm for 3D Lidar Point Cloud
一种3D激光雷达点云目标检测算法
- DOI:
10.1109/iciscae48440.2019.221663 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yin Zhang;Guoquan Ren;Ziyang Cheng;Guojie Kong - 通讯作者:
Guojie Kong
Optimal phase change temperature for BCHP system with PCM-TES based on energy storage effectiveness
基于储能效率的PCM-TES BCHP系统最佳相变温度
- DOI:
10.2298/tsci170222184z - 发表时间:
2017 - 期刊:
- 影响因子:1.7
- 作者:
Yin Zhang;Xin Wang;Yinping Zhang - 通讯作者:
Yinping Zhang
Yin Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yin Zhang', 18)}}的其他基金
Highly Scalable Algorithms and Solvers for Eigen-Problems: Unconstrained Optimization and Multiple Power Iterations
用于特征问题的高度可扩展的算法和求解器:无约束优化和多次幂迭代
- 批准号:
1418724 - 财政年份:2014
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
SBIR Phase I: Micro-Cloud Managed Web-based Peer-to-Peer Video Streaming
SBIR 第一阶段:微云管理的基于 Web 的点对点视频流
- 批准号:
1248447 - 财政年份:2013
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
CIF: Small: Compressive Network Analytics
CIF:小型:压缩网络分析
- 批准号:
1117009 - 财政年份:2011
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
Building Up the Optimization Algorithmic Infrastructure for Data-Driven Knowledge Discovery and Recovery
构建数据驱动知识发现和恢复的优化算法基础设施
- 批准号:
1115950 - 财政年份:2011
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
IHCS: Collaborative Research: Compressive Spectrum Sensing in Cognitive Radio Networks
IHCS:协作研究:认知无线电网络中的压缩频谱感知
- 批准号:
1028790 - 财政年份:2010
- 资助金额:
$ 24.2万 - 项目类别:
Continuing Grant
NetSE: Small: Multi-Resolution Analysis of Network Matrices
NetSE:小型:网络矩阵的多分辨率分析
- 批准号:
0916309 - 财政年份:2009
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
Collaborative Research: NeTS-NBD: Traffic Engineering in an Uncertain World
合作研究:NeTS-NBD:不确定世界中的流量工程
- 批准号:
0627020 - 财政年份:2006
- 资助金额:
$ 24.2万 - 项目类别:
Continuing Grant
CAREER: SMART -- A Scalable Monitoring, Analysis, and Response Toolkit for the Internet
职业:SMART——适用于互联网的可扩展监控、分析和响应工具包
- 批准号:
0546720 - 财政年份:2006
- 资助金额:
$ 24.2万 - 项目类别:
Continuing Grant
ACT/SGER: Algorithms for Large-Scale Approximate Nonnegative Matrix Factorization in Data Analysis
ACT/SGER:数据分析中大规模近似非负矩阵分解的算法
- 批准号:
0442065 - 财政年份:2004
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
Robust Solutions to Constrained Optimization Problems with Uncertain Parameters
具有不确定参数的约束优化问题的鲁棒解决方案
- 批准号:
0405831 - 财政年份:2004
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A study on practical algorithms for solving DM optimization problems
解决DM优化问题的实用算法研究
- 批准号:
22K11917 - 财政年份:2022
- 资助金额:
$ 24.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on practical algorithms for combinatorial optimization based on approximate submodularity
基于近似子模性的组合优化实用算法研究
- 批准号:
22K17857 - 财政年份:2022
- 资助金额:
$ 24.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Theory design and implementation of practical optimization and enumeration algorithms over graph structure
图结构实用优化和枚举算法的理论设计与实现
- 批准号:
20K11691 - 财政年份:2020
- 资助金额:
$ 24.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of practical algorithms for DC/DM global optimization
DC/DM全局优化实用算法构建
- 批准号:
19K11837 - 财政年份:2019
- 资助金额:
$ 24.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of practical combinatorial optimization algorithms by speeding up the continuous relaxation method
通过加速连续松弛方法开发实用的组合优化算法
- 批准号:
17K00040 - 财政年份:2017
- 资助金额:
$ 24.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An optimization-based framework for deconvolution: theoretical guarantees and practical algorithms
基于优化的反卷积框架:理论保证和实用算法
- 批准号:
1616340 - 财政年份:2016
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
Construction of practical algorithms for nonconvex global optimization
非凸全局优化实用算法的构建
- 批准号:
16K00028 - 财政年份:2016
- 资助金额:
$ 24.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of practical derivative-free algorithms for optimization
开发实用的无导数优化算法
- 批准号:
25330022 - 财政年份:2013
- 资助金额:
$ 24.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the Development of Practical Optimization Algorithms and Tools in Support of Simulation-Based Engineering Design
支持基于仿真的工程设计的实用优化算法和工具的开发
- 批准号:
443890-2013 - 财政年份:2013
- 资助金额:
$ 24.2万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Practical Algorithms for Applied Submodular Optimization
应用子模优化的实用算法
- 批准号:
1160915 - 财政年份:2012
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant