Grammar Inference Technology Applications in Software Engineering
语法推理技术在软件工程中的应用
基本信息
- 批准号:0811630
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2012-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There are many problems whose solutions take the form of patterns that may be expressed using grammars (e.g., speech recognition, text processing, genetic sequencing, programming language development, etc.). Construction of these grammars is usually carried out by computer scientists working with domain experts. Grammar inference (GI) is the process of learning a grammar from examples, either positive (i.e., the pattern should be recognized by the grammar) and/or negative (i.e., the pattern should not be recognized by the grammar). This research makes a fundamental contribution toward software engineering and grammar inference technology by: 1) advancing GI algorithms which may also have new applications in other areas of computer science (e.g., bioinformatics), 2) facilitating development of domain-specific languages (DSL's) for domain experts, thus increasing productivity and reliability, and 3) providing tools for recovering software model descriptions (metamodels) from models which have evolved independently of the metamodel. Memetic programming (MP) will be researched for recovering DSL's from example programs. MP extends genetic programming with local search and provides more effective solutions to many NP-hard problems. A local search technique based on incremental learning of context-free grammars (CFG's) will be developed along with memetic algorithms for CFG induction, in order to allow inference of DSL's. To perform metamodel inference, this research will: 1) improve abstraction hierarchy inference algorithms for metamodels, 2) recover the type information of metamodel entities, using program transformation, and 3) infer the modularization of large multi-tiered metamodels. These advancements are expected to allow inference of detailed, accurate and large scale metamodels.
存在许多问题,其解决方案采取可以使用语法表达的模式的形式(例如,语音识别、文本处理、基因测序、编程语言开发等)。这些语法的构建通常由计算机科学家与领域专家合作完成。 语法推理(GI)是从例子中学习语法的过程,无论是正面的(即,该模式应该被语法识别)和/或否定(即,该模式不应该被语法识别)。 这项研究对软件工程和语法推理技术做出了根本性的贡献:1)推进GI算法,这些算法也可能在计算机科学的其他领域(例如,生物信息学),2)促进领域专家的领域特定语言(DSL)的开发,从而提高生产率和可靠性,以及3)提供用于从已经独立于元模型进化的模型恢复软件模型描述(元模型)的工具。 模因编程(MP)将被研究用于从示例程序中恢复DSL。MP扩展了遗传规划的局部搜索,为许多NP难题提供了更有效的解决方案。基于上下文无关语法(CFG)的增量学习的本地搜索技术将与用于CFG归纳的模因算法一起沿着开发,以便允许DSL的推理。为了实现元模型的推理,本研究将:1)改进元模型的抽象层次推理算法; 2)利用程序转换恢复元模型实体的类型信息; 3)推理大型多层元模型的模块化。这些进步预计将允许详细,准确和大规模的元模型的推理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Barrett Bryant其他文献
Barrett Bryant的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Barrett Bryant', 18)}}的其他基金
A Transformational Approach to Clone Refactoring
克隆重构的变革性方法
- 批准号:
0702764 - 财政年份:2007
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Computer and Information Sciences Undergraduate Laboratory Enhancement: A Telecommunications Specialization
计算机与信息科学本科实验室增强:电信专业
- 批准号:
9351476 - 财政年份:1993
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似海外基金
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
- 批准号:
EP/Y002113/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Research Grant
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
- 批准号:
2336840 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
- 批准号:
2339829 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
- 批准号:
EP/Y000862/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Research Grant
CAREER: Efficient Large Language Model Inference Through Codesign: Adaptable Software Partitioning and FPGA-based Distributed Hardware
职业:通过协同设计进行高效的大型语言模型推理:适应性软件分区和基于 FPGA 的分布式硬件
- 批准号:
2339084 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
AI4PhotMod - Artificial Intelligence for parameter inference in Photosynthesis Models
AI4PhotMod - 用于光合作用模型中参数推断的人工智能
- 批准号:
BB/Y51388X/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Research Grant
CSR: Small: Latency-controlled Reduction of Data Center Expenses for Handling Bursty ML Inference Requests
CSR:小:通过延迟控制减少数据中心处理突发 ML 推理请求的费用
- 批准号:
2336886 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
- 批准号:
2338760 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
STATISTICAL AND COMPUTATIONAL THRESHOLDS IN SPIN GLASSES AND GRAPH INFERENCE PROBLEMS
自旋玻璃和图推理问题的统计和计算阈值
- 批准号:
2347177 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant