DUSEL R&D: Development of a Novel Scintillation Lattice Technology for a Low-Energy Solar Neutrino Spectrometer

杜塞尔R

基本信息

项目摘要

The sun offers the highest matter density, the longest baseline, pure electron-neutrino flavor at the source and the highest neutrino flux with the lowest energies for studying neutrino flavor phenomenology and to pursue detailed questions on solar astrophysics. A precision measurement of the neutrino luminosity of the sun is possible only by the detection of low energy (less than 2 MeV) solar neutrinos that contain more than 99.9% of the flux. The development of low energy neutrino detectors is one of three priorities set by the 2004 APS Mutidivisional Study on Neutrinos.One way to meet the experimental challenge of real time low energy neutrino detection is the Indium-based Low Energy Solar Neutrino Spectrometer (LENS). A key innovation is a novel scintillation lattice design for a granular detector for locating nuclear events and applying the space coincidence tag of the In neutrino capture reaction. With this technology, the development of the Indium liquid scintillator, and with new background suppression concepts, the physics objectives for LENS can be met in 125 tons of liquid scintillator containing 10 tons of In. The funds awarded for the R&D proposed here aim at the construction of a modest size prototype detector, MINILENS, at ~1% the size of the full scale LENS. This proposal specifically requests funds to develop the scintillation lattice technology and to construct an optical lattice.The broader impact includes the chemistry and engineering of In-loaded liquid scintillators with work impacting applications such as neutron detection in industry and in homeland security; and measurements of cosmogenic and other background radiation effects relevant for low level counting techniques for forensic, national security, archeological and atmospheric investigations.
太阳提供了最高的物质密度,最长的基线,纯电子中微子味的来源和最高的中微子通量与最低的能量为研究中微子味现象和追求太阳天体物理学的详细问题。太阳中微子光度的精确测量只有通过探测包含超过99.9%通量的低能(小于2 MeV)太阳中微子才有可能。低能中微子探测器的研制是2004年美国物理学会中微子多学科研究计划的三大重点之一,而铟基低能太阳中微子谱仪(透镜)是满足真实的低能中微子探测实验挑战的一个途径。一个关键的创新是一种新的闪烁晶格设计的颗粒探测器定位核事件和应用的空间符合标签的中微子捕获反应。利用这种技术,铟液体闪烁体的开发,以及新的背景抑制概念,可以在含有10吨In的125吨液体闪烁体中满足透镜的物理目标。这里提出的研发资金旨在建造一个中等尺寸的原型探测器MINILENS,其尺寸约为全尺寸透镜的1%。该提案特别要求提供资金,以开发闪烁晶格技术和建造光学晶格,其更广泛的影响包括装载液体闪烁器的化学和工程,其工作影响工业和国土安全中的中子探测等应用;以及与法医,国家安全,考古和大气调查。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ramaswamy Raghavan其他文献

Ramaswamy Raghavan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ramaswamy Raghavan', 18)}}的其他基金

Proposal for NSF funding to support Internaltional Workshop on "Sterile Neutrinos" at Virginia Tech September 26-28, 2011
NSF 资助支持弗吉尼亚理工大学“惰性中微子”内部研讨会的提案,2011 年 9 月 26-28 日
  • 批准号:
    1139003
  • 财政年份:
    2011
  • 资助金额:
    $ 48.56万
  • 项目类别:
    Standard Grant
Development of a Low-Energy Neutrino Spectrometer to Measure the Neutrino Luminosity of the Sun
开发低能中微子光谱仪来测量太阳的中微子光度
  • 批准号:
    0654212
  • 财政年份:
    2007
  • 资助金额:
    $ 48.56万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了