Quasi-isometric geometry of groups
群的拟等距几何
基本信息
- 批准号:0812513
- 负责人:
- 金额:$ 4.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-31 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Most of this proposal lies under the umbrella of a vast program proposed by Gromov: classify finitely generated groups by their quasi-isometric geometry. One way to study the geometry of a group is via a space called the asymptotic cone; in several important cases, interesting algebraic structure of groups has been found encoded by the topology of their asymptotic cones. Through a study of asymptotic cones, the PI will work towards understanding the geometry of several particular classes of groups, including mapping class groups, relatively hyperbolic groups, and three-manifold groups. In particular, the goal of the project is to develop new geometric invariants with an eye towards proving one of the main geometric conjectures concerning mapping class groups, namely quasi-isometric rigidity. This conjecture asserts that no other groups geometrically look like mapping class groups.Groups are an algebraic way of encoding the symmetries of a space. It turns out that an important class of groups (the finitely generated ones) are themselves associated with a certain geometric object. This object is built by taking each symmetry to be a point and declaring the distance between a pair of points to be the number of simple symmetries one has to apply to get from one to the other. In the study of finitely generated groups, insight into their geometry can often be gained by looking at the group from ``infinitely far away'' -- this notion can be made mathematically precise and yields what is called an asymptotic cone of the group. The PI proposes certain ways to study groups from this asymptotic viewpoint.
该提案的大部分内容都属于格罗莫夫提出的一个庞大计划的范畴:通过准等距几何对有限生成的群进行分类。研究群几何的一种方法是通过称为渐近锥的空间。在几个重要的例子中,我们发现了由渐近锥的拓扑编码的有趣的群代数结构。通过渐近锥的研究,PI 将致力于理解几个特定类群的几何形状,包括映射类群、相对双曲群和三流形群。特别是,该项目的目标是开发新的几何不变量,着眼于证明有关映射类组的主要几何猜想之一,即准等距刚性。这个猜想断言没有其他群在几何上看起来像映射类群。群是编码空间对称性的代数方式。事实证明,一类重要的群(有限生成的群)本身与某个几何对象相关联。该对象的构建方法是将每个对称性视为一个点,并将一对点之间的距离声明为从一个点到另一个点所必须应用的简单对称性的数量。在对有限生成群的研究中,通常可以通过从“无限远”观察群来深入了解其几何形状——这个概念可以在数学上变得精确,并产生所谓的群的渐近锥。 PI 提出了从渐近观点研究群的某些方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Behrstock其他文献
Jason Behrstock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Behrstock', 18)}}的其他基金
Geometric Group Theory, Random Graphs, and Isoperimetry
几何群论、随机图和等周图
- 批准号:
1710890 - 财政年份:2017
- 资助金额:
$ 4.75万 - 项目类别:
Standard Grant
3-Manifolds, Artin Groups, and Cubical Geometry
3-流形、Artin群和立方几何
- 批准号:
1040900 - 财政年份:2011
- 资助金额:
$ 4.75万 - 项目类别:
Standard Grant
Questions in and around Geometric Group Theory
几何群论及其相关问题
- 批准号:
1006219 - 财政年份:2010
- 资助金额:
$ 4.75万 - 项目类别:
Continuing Grant
相似海外基金
Skeletal effects of early pubertal suppression and peer-concordant puberty timing in transgender and gender diverse youth
青春期早期抑制和同龄人一致的青春期时机对跨性别和性别多样化青年的骨骼影响
- 批准号:
10591361 - 财政年份:2023
- 资助金额:
$ 4.75万 - 项目类别:
Geometry of autoequivalence groups via isometric actions on the space of stability conditions
通过稳定条件空间上的等距作用的自等价群的几何
- 批准号:
20K22310 - 财政年份:2020
- 资助金额:
$ 4.75万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Effects of Simulated Interventions on Hip Articular Cartilage Loading in Patients with Femoroacetabular Impingement and Developmental Dysplasia of the Hip
模拟干预对股骨髋臼撞击和髋关节发育不良患者髋关节软骨负荷的影响
- 批准号:
9927484 - 财政年份:2019
- 资助金额:
$ 4.75万 - 项目类别:
Effects of Simulated Interventions on Hip Articular Cartilage Loading in Patients with Femoroacetabular Impingement and Developmental Dysplasia of the Hip
模拟干预对股骨髋臼撞击和髋关节发育不良患者髋关节软骨负荷的影响
- 批准号:
9751482 - 财政年份:2019
- 资助金额:
$ 4.75万 - 项目类别:
Determinants of the Biomechanical Behavior of the Human Lamina Cribrosa
人类筛板生物力学行为的决定因素
- 批准号:
9765319 - 财政年份:2018
- 资助金额:
$ 4.75万 - 项目类别:
Determinants of the Biomechanical Behavior of the Human Lamina Cribrosa
人类筛板生物力学行为的决定因素
- 批准号:
10238922 - 财政年份:2018
- 资助金额:
$ 4.75万 - 项目类别:
Non invasive measurements of muscle microstructure assessed by diffusion tensor imaging
通过扩散张量成像评估肌肉微观结构的无创测量
- 批准号:
9982046 - 财政年份:2017
- 资助金额:
$ 4.75万 - 项目类别:
Noninvasive assessment of in vivo tissue loads to enhance the treatment of gait disorders
对体内组织负荷进行无创评估,以加强步态障碍的治疗
- 批准号:
10187614 - 财政年份:2017
- 资助金额:
$ 4.75万 - 项目类别:
Non invasive measurements of muscle microstructure assessed by diffusion tensor imaging
通过扩散张量成像评估肌肉微观结构的无创测量
- 批准号:
10229536 - 财政年份:2017
- 资助金额:
$ 4.75万 - 项目类别:
Non invasive measurements of muscle microstructure assessed by diffusion tensor imaging
通过扩散张量成像评估肌肉微观结构的无创测量
- 批准号:
9763318 - 财政年份:2017
- 资助金额:
$ 4.75万 - 项目类别:














{{item.name}}会员




