Investigating Trajectories of Learning & Transfer of Problem Solving Expertise from Mathematics to Physics to Engineering

调查学习轨迹

基本信息

  • 批准号:
    0816207
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

The investigators of the project Measurement, Modeling, and Methods Category are studying how science and engineering students build towards problem solving expertise throughout a major part of their academic careers and how they transfer their knowledge and skills across undergraduate STEM courses. They are observing students' problem across 3 years of courses starting with mathematics and continuing through introduction to physics to engineering courses. The three year research plan consists of longitudinal and cross-sectional studies that take place both in-class and out-of-class and involve 3000 students through seven classes at Kansas State University. The research team is studying the following variables associated with problem solving: the problem features of structuredness, complexity, domain specificity, and dynamicity; problem representation of form, organization, and sequencing; and individual differences of domain knowledge, problem solving experience, reasoning skills, and epistemological maturity. Quantitative data and qualitative evidence are being used to study the variables. An on-line homework system created with previous NSF funding (DUE 0206923) will enable quantitative analysis of the variables with large numbers of students.The data of subjects from underrepresented groups will be analyzed and compared to the larger groups of students. Results of this project are expected to advance the knowledge and understanding of STEM teaching and learning in undergraduate education.
测量、建模和方法类别项目的研究人员正在研究理工科学生如何在其学术生涯的主要部分中建立解决问题的专业知识,以及他们如何在本科STEM课程中转移他们的知识和技能。他们在三年的课程中观察学生的问题,从数学开始,一直到物理导论,再到工程课程。这项为期三年的研究计划包括纵向和横向研究,在课堂和课外进行,涉及堪萨斯州立大学7个班级的3000名学生。研究小组正在研究与问题解决相关的以下变量:问题的结构性、复杂性、领域特异性和动态性特征;形式、组织和顺序的问题表示;领域知识、解决问题经验、推理能力和认识论成熟度的个体差异。定量数据和定性证据被用于研究这些变量。一个在线作业系统是由以前的NSF资助(DUE 0206923)创建的,将使大量学生能够对变量进行定量分析。来自代表性不足群体的受试者数据将被分析,并与较大的学生群体进行比较。本项目的成果有望促进对本科教育中STEM教与学的认识和理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

N. Sanjay Rebello其他文献

Comparing Students’ and Experts’ Understanding of the Content of a Lecture
  • DOI:
    10.1007/s10956-007-9048-4
  • 发表时间:
    2007-05-05
  • 期刊:
  • 影响因子:
    5.500
  • 作者:
    Zdeslav Hrepic;Dean A. Zollman;N. Sanjay Rebello
  • 通讯作者:
    N. Sanjay Rebello
Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams
将注意力过程和概念性问题解决联系起来:视觉线索有助于从图表中自动提取相关信息
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Amy Rouinfar;Elise Agra;Adam M. Larson;N. Sanjay Rebello;Lester C. Loschky;Laura E. Thomas;N. Dakota.
  • 通讯作者:
    N. Dakota.
Student and AI responses to physics problems examined through the lenses of sensemaking and mechanistic reasoning
  • DOI:
    10.1016/j.caeai.2024.100318
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Amogh Sirnoorkar;Dean Zollman;James T. Laverty;Alejandra J. Magana;N. Sanjay Rebello;Lynn A. Bryan
  • 通讯作者:
    Lynn A. Bryan

N. Sanjay Rebello的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('N. Sanjay Rebello', 18)}}的其他基金

Research on Automated Formative Feedback of Problem-Solving Strategy Writing in Introductory Physics using Natural Language Processing
利用自然语言处理的物理导论中解题策略写作的自动形成反馈研究
  • 批准号:
    2300645
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Measuring and Modeling Visual Attention in Online Multimedia Instruction
在线多媒体教学中视觉注意力的测量和建模
  • 批准号:
    2100218
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
FIRE: Exploring Visual Cueing to Facilitate Problem Solving in Physics
FIRE:探索视觉提示以促进物理问题的解决
  • 批准号:
    1138697
  • 财政年份:
    2011
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Integrating Experimentation and Instrumentation in Upper-Division Physics
高级物理实验与仪器的结合
  • 批准号:
    0736897
  • 财政年份:
    2008
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
PECASE: Research on Students' Mental Models, Learning and Transfer as a Guide to Application-Based Curriculum Development and Instruction in Physics
PECASE:学生心理模型、学习和迁移的研究作为物理应用型课程开发和教学的指南
  • 批准号:
    0133621
  • 财政年份:
    2002
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Implementing the Workshop Model and other Research-based Instructional Strategies in Physics & Mathematics Courses
实施研讨会模式和其他基于研究的物理教学策略
  • 批准号:
    9951402
  • 财政年份:
    1999
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant

相似海外基金

A novel Deep Learning method for estimating Cortical Thickness trajectories in Alzheimer's patients and healthy population
一种新的深度学习方法,用于估计阿尔茨海默病患者和健康人群的皮质厚度轨迹
  • 批准号:
    2886734
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Studentship
Predicting trajectories of psychopathology using multimodal neuroimaging and multi-task learning
使用多模式神经影像和多任务学习预测精神病理学轨迹
  • 批准号:
    10825010
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
Developing machine learning tools to investigate evolutionary trajectories in emerging viral infectious diseases
开发机器学习工具来研究新出现的病毒传染病的进化轨迹
  • 批准号:
    2734734
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Studentship
Learning from the trajectories of mental health challenges for children, young people and parents over the course of the Covid-19 pandemic
从 Covid-19 大流行期间儿童、年轻人和父母面临的心理健康挑战的轨迹中学习
  • 批准号:
    ES/W011972/1
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Research Grant
III:Medium:Physics-guided Machine Learning for Predicting Cell Trajectories, Shapes, and Interactions in Complex Dynamic Environments
III:中:物理引导机器学习,用于预测复杂动态环境中的细胞轨迹、形状和相互作用
  • 批准号:
    2107332
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Machine learning methods for studying the trajectories of young offenders in administrative data
研究行政数据中青少年罪犯轨迹的机器学习方法
  • 批准号:
    ES/V006452/1
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Research Grant
Forecasting trajectories of HIV transmission networks with a novel phylodynamic and deep learning framework
使用新颖的系统动力学和深度学习框架预测艾滋病毒传播网络的轨迹
  • 批准号:
    10155407
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
Forecasting trajectories of HIV transmission networks with a novel phylodynamic and deep learning framework
使用新颖的系统动力学和深度学习框架预测艾滋病毒传播网络的轨迹
  • 批准号:
    10598075
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
Forecasting trajectories of HIV transmission networks with a novel phylodynamic and deep learning framework
使用新颖的系统动力学和深度学习框架预测艾滋病毒传播网络的轨迹
  • 批准号:
    9927071
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
Forecasting trajectories of HIV transmission networks with a novel phylodynamic and deep learning framework
使用新颖的系统动力学和深度学习框架预测艾滋病毒传播网络的轨迹
  • 批准号:
    10402263
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了