Princeton Center for Complex Materials

普林斯顿复杂材料中心

基本信息

  • 批准号:
    0819860
  • 负责人:
  • 金额:
    $ 1650万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

The Princeton Center for Complex Materials (PCCM), a Materials Research Science and Engineering Center at Princeton University, brings together researchers from five science and engineering departments to address pressing questions in interdisciplinary materials research. PCCM employs an integrated team approach in which experiment, theory, and simulation combine to underpin every interdisciplinary research group (IRG); each IRG is further enhanced by substantial industrial and international collaborations. The Center is committed to the integration of its forefront research with science and engineering education, extending from the postdoctoral and graduate levels, through its Partnership for Research and Education in Materials with California State University at Northridge and a vibrant Research Experience for Undergraduates (REU) program, to serving as a regional resource for K-12 education in materials. The Center has four interdisciplinary research groups. IRG A investigates two groups of unusual electronic materials, both of which show superior thermoelectric performance at low temperatures and suggest novel electronics applications. The first group includes a broad range of conducting oxides with a triangular-lattice structure, motivated by findings on sodium cobaltate revealing a rich array of electronic states. The second group includes "Dirac materials," such as graphene and bismuth-antimony alloys, which will allow direct examination of a theorized quantum state of matter, the topological insulator. IRG B executes a multidisciplinary investigation of molecular interfaces formed by non-traditional methods, such as stamping, printing, lamination, and laser-induced deposition. These fabrication techniques are moving towards applications in large-area and disposable electronic, light emission, and energy conversion and storage devices based on organic materials, yet very little is presently known of the interfaces they produce. IRG C focuses on integrating self-assembling nanoscale building blocks, such as large organic molecules, inorganic nanoparticles, and block copolymer nanodomains, into defined structures of macroscopic dimensions for applications as diverse as electron emitter arrays and photovoltaic cells. Self-assembly is an economical and rapid fabrication approach, and integrating self-assembled nanostructures into larger-scale units offers fundamental scientific challenges to accompany these technological opportunities. IRG D aims to create new materials systems with functionality derived from control of quantum degrees of freedom, such as the interaction of carriers with surfaces and defects, coherent charge and spin transport, and processes which limit the efficiency of coherent light emission. By integrating nanostructure fabrication capabilities, novel high-frequency and nanoscale characterization tools, and low-dimensional semiconductor theory, researchers will significantly advance understanding of, and ability to control, quantum phenomena for applications ranging from spin electronics, quantum electronics, and quantum cascade lasers. In materials education, PCCM's goals are threefold: 1) to educate a diverse group of agile Ph.D. graduates and postdoctoral researchers, who will form the next generation of materials faculty and industrial researchers, 2) to provide REU experiences for a broad set of non-Princeton undergraduates, especially students from non-Ph.D.-granting institutions, women, and underrepresented minority groups, and 3) to serve as a regional resource for K-12 materials education, leveraged via partnerships with other New Jersey organizations. Impact evaluation is a key aspect of all educational programs. Technology transfer to industry is facilitated through workshops and through the research collaborations with industrial researchers that are part of each IRG, and through an early-stage technologies program to develop Princeton inventions prior to transfer. The open-access shared experimental facilities established and supported by PCCM serve as a vital research resource for the region, with a broad user base spanning academic, nonprofit, and industrial laboratories.
普林斯顿大学复合材料研究中心(PCCM)是普林斯顿大学的材料研究科学和工程中心,汇集了来自五个科学和工程系的研究人员,以解决跨学科材料研究中的紧迫问题。PCCM采用综合的团队方法,将实验、理论和模拟相结合,以支持每个跨学科研究小组(IRG);每个IRG都通过大量的行业和国际合作得到进一步加强。该中心致力于将其前沿研究与科学和工程教育相结合,从博士后和研究生层面,通过其与加州州立大学北岭分校的材料研究和教育伙伴关系以及充满活力的本科生研究体验(REU)计划,成为K-12材料教育的地区资源。该中心有四个跨学科研究小组。IRG A研究了两组不寻常的电子材料,这两组材料都在低温下显示出优异的热电性能,并提出了新的电子应用。第一组包括一系列具有三角形晶格结构的导电氧化物,其动机是关于钴酸钠的发现揭示了丰富的电子态阵列。第二类包括“狄拉克材料”,如石墨烯和铋锑合金,这将允许直接检查物质的理论量子状态,即拓扑绝缘体。IRG B对非传统方法形成的分子界面进行多学科研究,如冲压、印刷、层压和激光诱导沉积。这些制造技术正朝着基于有机材料的大面积和一次性电子、光发射和能量转换和存储设备的应用方向发展,但目前人们对它们产生的界面知之甚少。IRG C专注于将自组装纳米级构建块,如大有机分子、无机纳米颗粒和嵌段共聚纳米结构域,集成到宏观尺寸的定义结构中,用于电子发射器阵列和光伏电池等各种应用。自组装是一种经济和快速的制造方法,将自组装纳米结构集成到更大规模的单元中提供了伴随这些技术机会的基本科学挑战。IRG D的目标是创造具有量子自由度控制功能的新材料系统,例如载流子与表面和缺陷的相互作用,相干电荷和自旋传输,以及限制相干光发射效率的过程。通过集成纳米结构制造能力、新型高频和纳米尺度表征工具以及低维半导体理论,研究人员将显著提高对量子现象的理解和控制能力,应用范围从自旋电子学、量子电子学和量子级联激光器。在材料教育方面,PCCM的目标有三个:1)培养一批灵活的博士毕业生和博士后研究人员,他们将形成下一代材料教师和工业研究人员;2)为广泛的非普林斯顿本科生,特别是来自非博士院校的学生、女性和代表性较低的少数群体提供REU经验;以及3)通过与新泽西州其他组织的合作,作为K-12材料教育的地区资源。影响评估是所有教育项目的一个关键方面。通过研讨会和与工业研究人员的研究合作(作为每个IRG的一部分),以及通过在转移之前开发普林斯顿发明的早期技术计划,促进了向行业的技术转移。PCCM建立和支持的开放访问共享实验设施是该地区重要的研究资源,拥有广泛的用户基础,涵盖学术、非营利和工业实验室。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nai Phuan Ong其他文献

Nai Phuan Ong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nai Phuan Ong', 18)}}的其他基金

Workshop: Exploring Quantum Phenomena and Quantum Matter in Ultrahigh Magnetic Fields; September 21-22, 2017, Alexandria, VA
研讨会:探索超高磁场中的量子现象和量子物质;
  • 批准号:
    1745525
  • 财政年份:
    2017
  • 资助金额:
    $ 1650万
  • 项目类别:
    Standard Grant
Electronic Transport in Non-Fermi-Liquid Materials
非费米液体材料中的电子传输
  • 批准号:
    9224077
  • 财政年份:
    1993
  • 资助金额:
    $ 1650万
  • 项目类别:
    Continuing Grant
Novel Transport Phenomena in Charge-Density-Wave Solids (Materials Research)
电荷密度波固体中的新输运现象(材料研究)
  • 批准号:
    8109971
  • 财政年份:
    1981
  • 资助金额:
    $ 1650万
  • 项目类别:
    Continuing Grant
Experimental Study of Anomalous Transport in the Linear-Chain Transition-Metal-Trichalcogenides
直链过渡金属三硫属化物反常输运的实验研究
  • 批准号:
    7905418
  • 财政年份:
    1979
  • 资助金额:
    $ 1650万
  • 项目类别:
    Continuing Grant

相似国自然基金

金刚石NV center与磁子晶体强耦合的混合量子系统研究
  • 批准号:
    12375018
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
金刚石SiV center与声子晶体强耦合的新型量子体系研究
  • 批准号:
    92065105
  • 批准年份:
    2020
  • 资助金额:
    80.0 万元
  • 项目类别:
    重大研究计划
金刚石NV center与磁介质超晶格表面声子极化激元强耦合的新型量子器件研究
  • 批准号:
    11774285
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
室温下金刚石晶体内N-V center单电子自旋量子比特研究
  • 批准号:
    10974251
  • 批准年份:
    2009
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

CENTER FOR COMPLEX PARTICLE SYSTEMS (COMPASS)
复杂粒子系统中心(指南针)
  • 批准号:
    2243104
  • 财政年份:
    2023
  • 资助金额:
    $ 1650万
  • 项目类别:
    Cooperative Agreement
A Design Study for a Muon Collider complex at 10 TeV center of mass
质心 10 TeV 的 Mu 子对撞机复合体的设计研究
  • 批准号:
    10052072
  • 财政年份:
    2023
  • 资助金额:
    $ 1650万
  • 项目类别:
    EU-Funded
A Design Study for a Muon Collider complex at 10+ TeV center of mass
质心 10 TeV 的 Mu 子对撞机复合体的设计研究
  • 批准号:
    10073867
  • 财政年份:
    2023
  • 资助金额:
    $ 1650万
  • 项目类别:
    EU-Funded
MuCol: A Design Study for a Muon Collider complex at 10 TeV center of mass
MuCol:质心 10 TeV 的 Mu 子对撞机复合体的设计研究
  • 批准号:
    10048463
  • 财政年份:
    2023
  • 资助金额:
    $ 1650万
  • 项目类别:
    EU-Funded
MuCoI: A Design Study for a Muon Collider complex at 10 TeV center of mass
MuCoI:质心 10 TeV 的 Mu 子对撞机复合体的设计研究
  • 批准号:
    10050833
  • 财政年份:
    2023
  • 资助金额:
    $ 1650万
  • 项目类别:
    EU-Funded
A Design Study for a Muon Collider complex at 10 TeV center of mass (MuCol)
质心 10 TeV 的 Mu 子对撞机复合体 (MuCol) 的设计研究
  • 批准号:
    10058076
  • 财政年份:
    2023
  • 资助金额:
    $ 1650万
  • 项目类别:
    EU-Funded
MuCol - A DESIGN STUDY FOR A MUON COLLIDER COMPLEX AT 10+ TEV CENTER OF MASS:
MuCol - 10 TEV 质心的 μ 子对撞机复合体的设计研究:
  • 批准号:
    10084343
  • 财政年份:
    2023
  • 资助金额:
    $ 1650万
  • 项目类别:
    EU-Funded
The MYC/MIZ-1 complex in germinal center B cells and B cell lymphomagenesis
生发中心 B 细胞和 B 细胞淋巴瘤发生中的 MYC/MIZ-1 复合物
  • 批准号:
    484358
  • 财政年份:
    2023
  • 资助金额:
    $ 1650万
  • 项目类别:
    Operating Grants
Mapping the germinal center and memory B cell landscape to complex antigens
将生发中心和记忆 B 细胞景观映射到复杂抗原
  • 批准号:
    10473006
  • 财政年份:
    2021
  • 资助金额:
    $ 1650万
  • 项目类别:
Is a Hydrogenase-Like Enzyme Complex Lacking a Catalytic Center the Missing Link in the Respiratory Complexes?
缺乏催化中心的类似氢化酶的酶复合物是呼吸复合物中缺失的一环吗?
  • 批准号:
    21K20578
  • 财政年份:
    2021
  • 资助金额:
    $ 1650万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了