Exploiting Parametric Effects in Resonant Nanosystems

利用共振纳米系统中的参数效应

基本信息

  • 批准号:
    0826276
  • 负责人:
  • 金额:
    $ 31.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-15 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

Though resonant, electromechanical nanosystems have been shown to offer distinct potential in applications ranging from radio-frequency (RF) filtering to highly-sensitive mass sensing, their practical implementation is currently impeded by the comparatively-small output signals they produce, and by their comparatively-low quality (Q) factors of resonance. While on-chip, low-noise amplifiers can be used to partially negate these constraints, an alternative, and in many ways more attractive approach, is to realize output signals of sufficient (usable) amplitude by exploiting dynamic phenomena, namely parametric amplification and/or parametric resonance, within the resonators themselves. The proposed project, incorporating both analytical and experimental activities, seeks to investigate the nonlinear dynamics and stability of parametrically-excited, high-frequency nanoelectromechanical systems (NEMS), such as nanotube and nanowire resonators, in order to significantly improve their performance in emerging applications such as nanomechanical, radio-frequency (RF) signal processing, nanomechanical mass detection, and ultra-fast sensing and actuation. The research effort will initially focus on the development of multi-physics, distributed-parameter models of representative, electrostatically-actuated nanoelectromechanical devices. These models, incorporating realistic noise sources, will be systematically discretized and analyzed using standard perturbation methods. The results of these analyses will be used to identify regions of stable and unstable operation, to develop predictive design tools, and to distill promising device designs. Single-walled carbon nanotube resonators based on these designs will be subsequently fabricated and tested, using the fabrication and electrical characterization suites available at Purdue University?s Birck Nanotechnology Center, to verify predicted dynamic behaviors. Ultimately, the work will develop a refined understanding of the complex nonlinear behaviors associated with parametric effects at the nanoscale and, with this understanding in hand, will actively exploit these nonlinear behaviors to realize improved performance metrics and device outputs of sufficient amplitude to be of use in practical implementation.To ensure the rapid distribution of pertinent research results, the project will leverage the cyber-infrastructure of the nanoHUB, the science portal of the NSF?s Network for Computational Nanotechnology (NCN), which provides online services for research, learning, and collaborations. Specifically, the PI?s will develop and deploy on the nanoHUB a comprehensive software tool for the simulation of nanotube/nanowire resonators with different geometric configurations, material properties, transduction mechanisms, and noise sources. Scientists and students working worldwide will be able to use this tool to predict the dynamic range, nonlinear phenomena, mixing/filtering, and noise effects of such resonators, leading to the better design of nanoelectromechanical systems. The online tool will be supplemented by freely-available, online user guides, tutorials, and an introductory lecture on ?Micro and Nanoresonators?. These resources, with others, will be profitably utilized in the development of a new class focusing on the dynamics of MEMS/NEMS, as well as tutorials that the PIs intend to offer at major international conferences. Under-represented undergraduate students will assist in the development of the online resources through specifically targeted SURF (summer undergraduate research fellowship) endeavors at Purdue University.
虽然谐振式机电纳米系统在从射频(RF)滤波到高灵敏度质量传感的应用中显示出独特的潜力,但它们的实际实施目前受到它们产生的相对较小的输出信号和相对较低的共振质量(Q)因子的阻碍。虽然片上低噪声放大器可用于部分消除这些限制,但另一种更有吸引力的方法是通过利用谐振器本身的动态现象(即参数放大和/或参数共振)来实现足够(可用)幅度的输出信号。该项目将分析和实验相结合,旨在研究参数激励、高频纳米机电系统(NEMS)的非线性动力学和稳定性,如纳米管和纳米线谐振器,以显著提高其在纳米机械、射频(RF)信号处理、纳米机械质量检测和超快速传感和驱动等新兴应用中的性能。研究工作最初将集中于开发具有代表性的静电驱动纳米机电器件的多物理场、分布参数模型。这些模型,纳入现实噪声源,将系统地离散和分析使用标准摄动方法。这些分析的结果将用于确定稳定和不稳定运行的区域,开发预测设计工具,并提取有前途的设备设计。基于这些设计的单壁碳纳米管谐振器随后将使用普渡大学提供的制造和电气表征套件进行制造和测试。,以验证预测的动态行为。最终,这项工作将发展对纳米尺度参数效应相关的复杂非线性行为的精细理解,并且,有了这种理解,将积极利用这些非线性行为来实现改进的性能指标和足够振幅的器件输出,以便在实际实施中使用。为了确保相关研究成果的快速分发,该项目将利用国家科学基金会的科学门户网站nanoHUB的网络基础设施。计算纳米技术网络(NCN),为研究、学习和合作提供在线服务。具体来说,PI?s将在nanoHUB上开发和部署一个全面的软件工具,用于模拟具有不同几何结构、材料特性、转导机制和噪声源的纳米管/纳米线谐振器。全世界的科学家和学生将能够使用这个工具来预测谐振器的动态范围、非线性现象、混合/滤波和噪声效应,从而更好地设计纳米机电系统。这个在线工具将由免费提供的在线用户指南、教程和一个关于?微纳谐振器?这些资源将与其他资源一起,在开发专注于MEMS/NEMS动态的新课程以及pi打算在主要国际会议上提供的教程中得到有益的利用。未被充分代表的本科生将通过普渡大学专门针对SURF(夏季本科生研究奖学金)的努力,协助开发在线资源。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Rhoads其他文献

WIP: Validating a Motivated Strategies for Learning Questionnaire (MSLQ) in an Active, Blended, and Collaborative (ABC) Dynamics Learning Environment
WIP:在主动、混合和协作 (ABC) 动态学习环境中验证动机学习策略问卷 (MSLQ)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ms. Wonki Lee;F. Prof.Jeffrey;Rhoads;Jeffrey Rhoads;Dr. Edward J. Berger;Prof. Jennifer DeBoer;Jennifer Deboer
  • 通讯作者:
    Jennifer Deboer

Jeffrey Rhoads的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Rhoads', 18)}}的其他基金

Collaborative Research: Exploring Dynamic Complex Behaviors in Many-Degree-of-Freedom, Coupled Micro- and Nano-systems
合作研究:探索多自由度耦合微纳米系统中的动态复杂行为
  • 批准号:
    1537988
  • 财政年份:
    2015
  • 资助金额:
    $ 31.97万
  • 项目类别:
    Standard Grant
Investigating the System-Level Dynamics of Fully-Integrated CMOS-SOI Nanoresonators
研究全集成 CMOS-SOI 纳米谐振器的系统级动力学
  • 批准号:
    1233780
  • 财政年份:
    2012
  • 资助金额:
    $ 31.97万
  • 项目类别:
    Standard Grant
CAREER: Exploiting Collective Behaviors in Coupled Micro- and Nanosystems
职业:利用耦合微纳米系统中的集体行为
  • 批准号:
    0846385
  • 财政年份:
    2009
  • 资助金额:
    $ 31.97万
  • 项目类别:
    Standard Grant

相似海外基金

Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
  • 批准号:
    EP/X031918/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.97万
  • 项目类别:
    Fellowship
CMR parametric mappingを用いた急性大動脈解離の新規進展予測方法
使用 CMR 参数映射预测急性主动脉夹层进展的新方法
  • 批准号:
    24K19039
  • 财政年份:
    2024
  • 资助金额:
    $ 31.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
  • 批准号:
    EP/Y003152/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.97万
  • 项目类别:
    Research Grant
Acoustic parametric modeling of laryngeal voice quality
喉部语音质量的声学参数化建模
  • 批准号:
    24K15013
  • 财政年份:
    2024
  • 资助金额:
    $ 31.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
PET Parametric imagingを用いた糖尿病の臓器糖代謝変化の検討
使用 PET 参数成像检查糖尿病器官葡萄糖代谢变化
  • 批准号:
    24K18840
  • 财政年份:
    2024
  • 资助金额:
    $ 31.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Non-Parametric Inference of Temporal Data
合作研究:时态数据的非参数推理
  • 批准号:
    2311249
  • 财政年份:
    2023
  • 资助金额:
    $ 31.97万
  • 项目类别:
    Standard Grant
Collaborative Research: SHINE: Observational and Theoretical Studies of the Parametric Decay Instability in the Lower Solar Atmosphere
合作研究:SHINE:太阳低层大气参数衰变不稳定性的观测和理论研究
  • 批准号:
    2229101
  • 财政年份:
    2023
  • 资助金额:
    $ 31.97万
  • 项目类别:
    Standard Grant
Development of Parametric Estimation Based on Variational Divergence
基于变分散度的参数估计的发展
  • 批准号:
    23K16849
  • 财政年份:
    2023
  • 资助金额:
    $ 31.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Geostatistical Software for Non-Parametric Geostatistical Modeling of Uncertainty
用于不确定性非参数地统计建模的地统计软件
  • 批准号:
    10697081
  • 财政年份:
    2023
  • 资助金额:
    $ 31.97万
  • 项目类别:
A shape-constrained approach for non-parametric variance estimation for Markov Chains
马尔可夫链非参数方差估计的形状约束方法
  • 批准号:
    2311141
  • 财政年份:
    2023
  • 资助金额:
    $ 31.97万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了