Molecular Simulation Study of Wetting at Rough Surfaces
粗糙表面润湿的分子模拟研究
基本信息
- 批准号:0828979
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CBET-0828979ErringtonIntellectual MeritIn a wide range of both naturally occurring phenomena and industrial processes fluids interact with solid substrates. Such fluids exhibit a rich variety of behavior that is distinct from that observed for bulk fluids. The response of a fluid at a surface depends qualitatively upon the relative strengths and ranges of the fluid-fluid and fluid-substrate interactions and the structural characteristics of the substrate. It is the latter of these influences that we focus on here. Specifically, this project will examine the effect of nanoscale substrate roughness and curvature on wetting behavior. Our proposed studies are motivated by recent efforts that employ tunable nanostructured substrate features to modify and control the wetting behavior of a system. Examples include the use of oxygen-plasma treatment to produce polymer surface topographies with periodicity in the 50-300 nm range, the construction of surfaces with aligned carbon nanotube arrays, and the use of silicon nanowires with 20-50 nm diameters to produce fractally rough surfaces.The project proposes two molecular simulation studies that will both complement recent experimental work and advance fundamental knowledge with respect to the wetting behavior of fluids on heterogeneous and/or curved surfaces. Three model fluids will be utilized in this work: an atomistic Lennard-Jones fluid, water, and n-alkane chains. In our first general study we will examine the interfacial properties of fluids at substrates characterized by topographies with a period and amplitude in the 1-10 nm range. This effort will enable one to describe the influence of regular roughness at a length scale that is difficult to probe experimentally. To accomplish this task, the investigators will employ a model that enables us to systematically vary the relative amplitude, length scale, and shape of substrate features exposed to a fluid. Recently-developed simulation methodologies will be used to quantitatively probe how these nanoscale features influence important interfacial properties, including the contact angle, solid-vapor and solid-liquid interfacial tensions, and the line tension, as well as the order of the wetting transition. In the second general stud, they will probe the role of substrate curvature on wetting behavior. A number of recent strategies for controlling the contact angle of a droplet involve the exposure of a fluid to a porous assembly of cylindrical objectives (e.g. carbon nanotubes, silicon nanowires) with diameters on the order of 30-100 fluid molecular diameters. At the molecular level fluid particles interact with highly curved substrates. Density functional calculations with simple systems suggest that this degree of curvature has a significant impact on wetting properties. Given that the diameters of these cylindrical objects can often be controlled, quantitative knowledge of the extent to which curvature influences wetting will prove useful in the design of nanostructured substrates. Within this proposal, the investigators describe a means to quantitatively probe the interfacial properties of fluids at cylindrical objects with diameters spanning from a few to thousands of fluid molecular diameters.Broader ImpactDevelopment of a deeper fundamental understanding of the behavior of fluids in the presence of a surface would have a profound influence on the ability of scientists and engineers to design novel technologies and harness the unique features of natural systems. The results that emerge from this study will have broad impact on numerous scientific disciplines and industrial applications. Examples that illustrate the need for knowledge of how a fluid interacts with a surface are numerous, and include the design of water-repellent and stain-resistant fabrics, friction-reducing surfaces, sensors, medical implants, and nanoscale optofluidic devices. On the education front, this project will impact students at the elementary, undergraduate, and graduate levels. At the university level, students will be trained in the areas of surface thermodynamics, statistical mechanics, and computer simulation. The PI will actively recruit undergraduate students to participate in the project proposed here. Also, the PI will continue an outreach program in which he annually visits 5th grade classrooms at Big Tree Elementary School.
CBET-0828979 Errington智能优点在广泛的自然现象和工业过程中,流体与固体基质相互作用。这种流体表现出丰富多样的行为,这与观察到的大宗流体的行为截然不同。流体在表面的响应定性地取决于流体-流体和流体-衬底相互作用的相对强度和范围以及衬底的结构特征。我们在这里关注的是这些影响中的后一种。具体地说,这个项目将研究纳米级衬底粗糙度和曲率对润湿行为的影响。我们提出的研究是由最近的努力推动的,这些努力利用可调纳米结构衬底特征来修改和控制系统的润湿行为。例如,使用氧等离子体处理来产生50-300 nm范围内周期性的聚合物表面形貌,构建具有排列的碳纳米管阵列的表面,以及使用直径20-50 nm的硅纳米线来产生分形粗糙表面。该项目提出了两项分子模拟研究,这两项研究将补充最近的实验工作,并提高关于流体在非均质和/或弯曲表面上的润湿行为的基础知识。这项工作中将使用三种模型流体:原子Lennard-Jones流体、水和正构烷烃链。在我们的第一个一般性研究中,我们将考察以周期和幅度在1-10纳米范围内的地形为特征的衬底上流体的界面性质。这一努力将使人们能够描述在很难在实验上探测的长度尺度上规则粗糙度的影响。为了完成这项任务,研究人员将采用一种模型,使我们能够系统地改变暴露在流体中的衬底特征的相对幅度、长度比例和形状。最近开发的模拟方法将被用来定量地探索这些纳米尺度特征如何影响重要的界面性质,包括接触角、固-气和固-液界面张力、线张力以及润湿转变的顺序。在第二个一般性研究中,他们将探索基材曲率对润湿行为的作用。最近一些控制液滴接触角的策略涉及将流体暴露在直径在30-100流体分子直径数量级的圆柱形目标(例如碳纳米管、硅纳米线)的多孔组件中。在分子水平上,流体颗粒与高度弯曲的基质相互作用。简单体系的密度泛函计算表明,这种曲率程度对润湿性质有很大影响。鉴于这些圆柱形物体的直径通常是可以控制的,有关曲率影响润湿程度的定量知识将在纳米结构衬底的设计中被证明是有用的。在这项提议中,研究人员描述了一种定量探测流体在直径从几个到数千个流体分子直径的圆柱形物体上的界面性质的方法。广泛影响对存在表面时流体行为的更深层次的基本了解的发展将对科学家和工程师设计新技术和利用自然系统的独特特征的能力产生深远的影响。这项研究的结果将对许多科学学科和工业应用产生广泛的影响。说明需要了解流体如何与表面相互作用的例子有很多,包括防水和抗污渍织物、减摩表面、传感器、医疗植入物和纳米级光流体设备的设计。在教育方面,该项目将影响小学、本科生和研究生水平的学生。在大学一级,学生将接受表面热力学、统计力学和计算机模拟领域的培训。PI将积极招募本科生参与这里提出的项目。此外,PI还将继续他每年访问大树小学五年级教室的外展计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Errington其他文献
Jeffrey Errington的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Errington', 18)}}的其他基金
Participant Support for the Eighth Triennial Conference on Foundations of Molecular Modeling and Simulation (FOMMS 2022)
第八届分子建模与模拟基础三年一度会议 (FOMMS 2022) 的参与者支持
- 批准号:
2224189 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Development of Molecular Simulation Methods to Compute Phase and Interfacial Properties of Complex Fluids
计算复杂流体的相和界面性质的分子模拟方法的发展
- 批准号:
1900344 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
HDR DSC: Collaborative Research: Connecting the Dots
HDR DSC:协作研究:连接点
- 批准号:
1924292 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Molecular Simulation Study of Rock-Water-Oil Systems
岩-水-油体系的分子模拟研究
- 批准号:
1705620 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Development and Application of Molecular Simulation Methods to Compute Bulk and Interfacial Properties of Ionic Liquids
计算离子液体体积和界面性质的分子模拟方法的开发和应用
- 批准号:
1362572 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Molecular Simulation Study of Interfacial Phenomena Related to Geological CO2 Storage
CO2地质封存相关界面现象的分子模拟研究
- 批准号:
1264323 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Development of Molecular Simulation Methods to Compute Interfacial Properties of Electrolytes
计算电解质界面性质的分子模拟方法的发展
- 批准号:
1012356 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
2004 Midwest Thermodynamics and Statistical Mechanics Meeting; Buffalo, NY; June 3-4, 2004
2004年中西部热力学和统计力学会议;
- 批准号:
0423068 - 财政年份:2004
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Connecting Structural Order to Thermodynamic and Kinetic Properties of Aqueous Solutions: A Research and Education Program
职业:将结构顺序与水溶液的热力学和动力学性质联系起来:研究和教育计划
- 批准号:
0238772 - 财政年份:2003
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Molecular simulation study of the SARS-CoV-2 virus in aerosols
气溶胶中 SARS-CoV-2 病毒的分子模拟研究
- 批准号:
468594486 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Research Grants
Study of chiral recognition on polysaccharide derivatives using molecular simulation combined with data analysis method
分子模拟结合数据分析方法的多糖衍生物手性识别研究
- 批准号:
21K05187 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of sensitivity prediction of molecular target drugs for non-small cell lung cancer by in silico molecular simulation analysis and a mathematical model
基于计算机分子模拟分析和数学模型的非小细胞肺癌分子靶向药物敏感性预测研究
- 批准号:
19K12202 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular Simulation Study of Rock-Water-Oil Systems
岩-水-油体系的分子模拟研究
- 批准号:
1705620 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Molecular Simulation Study of the Bio-membrane of the neuron in the early stage of Alzheimer's disease
阿尔茨海默病早期神经元生物膜的分子模拟研究
- 批准号:
17K00421 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combined molecular simulation and experimental study to discover, predict and control enzyme immobilization in polymeric nanoparticles
结合分子模拟和实验研究来发现、预测和控制聚合物纳米粒子中的酶固定
- 批准号:
1703438 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Flow-Induced Disentanglement in Shear and Elongational Flows of Entangled Polymers: A Hi-Fidelity Molecular Simulation Study
缠结聚合物剪切和拉伸流中的流动诱导解缠结:高保真分子模拟研究
- 批准号:
1602890 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
A Molecular Dynamics Simulation study of the Austenite-Ferrite transformation in Polycrystalline Fe
多晶铁中奥氏体-铁素体转变的分子动力学模拟研究
- 批准号:
442473-2013 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Postgraduate Scholarships - Doctoral
NMR and molecular simulation study of structure and phase transition of water under pressure inside nanocarbon materials
纳米碳材料内部压力下水的结构和相变的核磁共振和分子模拟研究
- 批准号:
26400437 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular Simulation Study of Interfacial Phenomena Related to Geological CO2 Storage
CO2地质封存相关界面现象的分子模拟研究
- 批准号:
1264323 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant














{{item.name}}会员




