RUI: Approximation Algorithms for Scheduling Problems

RUI:调度问题的近似算法

基本信息

  • 批准号:
    0830569
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

Scheduling problems are among the most widely studied class of problems in Computer Science. These problems have applications is several areas, e.g., in large-scale communication networks. There is strong evidence that most kinds of scheduling problems cannot be optimally solved in a reasonable amount of time. However, the question of finding approximately optimal solutions for many kinds of scheduling problems is unresolved. The goal of this research is to develop new techniques to determine which scheduling problems can be solved approximately optimally in a reasonable amount of computing time, and to develop efficient algorithms for the positive examples.Dr. Gandhi has an excellent record of preparing undergraduates for this kind of research, as well as guiding them in it. This project continues his program of helping students at Rutgers Camden to discover their own potential by working very closely with them -- working on research problems with them, mentoring them, and encouraging their interest in discrete mathematics and algorithms.
调度问题是计算机科学中研究最广泛的一类问题之一。这些问题在几个领域都有应用,例如在大规模通信网络中。有强有力的证据表明,大多数类型的调度问题不能在合理的时间内得到最优解决。然而,如何为许多类型的调度问题找到近似最优解的问题尚未得到解决。这项研究的目标是开发新的技术来确定哪些排序问题可以在合理的计算时间内近似最优解决,并为正例开发有效的算法。甘地在为本科生进行这类研究做准备以及指导他们进行研究方面有着出色的记录。该项目继续他的计划,帮助罗格斯大学卡姆登的学生通过与他们密切合作来发现他们自己的潜力--与他们一起研究问题,指导他们,并鼓励他们对离散数学和算法的兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rajiv Gandhi其他文献

Deep learning–based clustering for endotyping and post-arthroplasty response classification using knee osteoarthritis multiomic data
基于深度学习的聚类,用于使用膝关节骨关节炎多组学数据进行内型分析和关节置换术后反应分类
  • DOI:
    10.1016/j.ard.2025.01.012
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    20.600
  • 作者:
    Jason S. Rockel;Divya Sharma;Osvaldo Espin-Garcia;Katrina Hueniken;Amit Sandhu;Chiara Pastrello;Kala Sundararajan;Pratibha Potla;Noah Fine;Starlee S. Lively;Kim Perry;Nizar N. Mahomed;Khalid Syed;Igor Jurisica;Anthony V. Perruccio;Y. Raja Rampersaud;Rajiv Gandhi;Mohit Kapoor
  • 通讯作者:
    Mohit Kapoor
AODV based adaptive distributed hybrid multipath routing for mobile AdHoc network
基于AODV的移动AdHoc网络自适应分布式混合多路径路由
Factors Associated with Return to Work Following Work-Related Injuries to the Lower Extremities
下肢因工受伤后重返工作岗位的相关因素
  • DOI:
    10.29011/2688-6413.100008
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrea Veljkovic;Rajiv Gandhi;P. Salat;K. Abbas;Khalid A Syed;J. Lau
  • 通讯作者:
    J. Lau
243 - TOTAL KNEE ARTHROPLASTY VERSUS EDUCATION AND EXERCISE: COMPARING PATIENT OUTCOMES USING PROPENSITY-SCORE MATCHED DATA
  • DOI:
    10.1016/j.joca.2024.02.255
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    James J. Young;Michael G. Zywiel;Søren T. Skou;Vinod Chandran;J Rod Davey;Rajiv Gandhi;Nizar N. Mahomed;Khalid Syed;Christian J. Veillette;Y. Raja Rampersaud;Anthony V. Perruccio
  • 通讯作者:
    Anthony V. Perruccio
Painful and Painless Diabetic Neuropathies: What Is the Difference?
  • DOI:
    10.1007/s11892-019-1150-5
  • 发表时间:
    2019-05-07
  • 期刊:
  • 影响因子:
    6.400
  • 作者:
    Pallai Shillo;Gordon Sloan;Marni Greig;Leanne Hunt;Dinesh Selvarajah;Jackie Elliott;Rajiv Gandhi;Iain D. Wilkinson;Solomon Tesfaye
  • 通讯作者:
    Solomon Tesfaye

Rajiv Gandhi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rajiv Gandhi', 18)}}的其他基金

AF:RUI:Small:Approximation Problems with Tree Outputs Under Parameterized Constraints
AF:RUI:Small:参数化约束下树输出的近似问题
  • 批准号:
    1910565
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Transforming Potential into Promise: A Depth-First Approach
将潜力转化为承诺:深度优先的方法
  • 批准号:
    1433220
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
U.S.-India International Collaborative Research and Training for Computer Science Students
美印计算机科学专业学生国际合作研究与培训
  • 批准号:
    1050968
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER: Computer Science Research and Enrichment Program
EAGER:计算机科学研究和强化计划
  • 批准号:
    1048606
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似海外基金

Approximation algorithms for hard optimization problems in multi-omics research and operations research
多组学研究和运筹学中硬优化问题的近似算法
  • 批准号:
    RGPIN-2019-05258
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms for Restricted Invertibility and Experimental Design
受限可逆性的近似算法和实验设计
  • 批准号:
    576020-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Approximation algorithms and numerical experiments for covering vertices by long paths
长路径覆盖顶点的近似算法和数值实验
  • 批准号:
    573063-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    University Undergraduate Student Research Awards
Approximation Algorithms for Combinatorial Optimization Problems
组合优化问题的近似算法
  • 批准号:
    RGPIN-2020-06423
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms for Clustering and Vehicle Routing
聚类和车辆路径的近似算法
  • 批准号:
    RGPIN-2020-04043
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms and Hardness of Approximation for Optimization Problems
优化问题的逼近算法和逼近难度
  • 批准号:
    RGPIN-2018-04677
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms for Clustering and Vehicle Routing
聚类和车辆路径的近似算法
  • 批准号:
    RGPAS-2020-00075
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Approximation Algorithms for NP-Hard Problems
NP 困难问题的近似算法
  • 批准号:
    RGPIN-2019-04197
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms for NP-Hard Problems
NP 困难问题的近似算法
  • 批准号:
    RGPIN-2019-04197
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation algorithms for hard optimization problems in multi-omics research and operations research
多组学研究和运筹学中硬优化问题的近似算法
  • 批准号:
    RGPIN-2019-05258
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了