Collaborative Research: Minimum Sobolov Norm Methods
合作研究:最小索博洛夫范数方法
基本信息
- 批准号:0830764
- 负责人:
- 金额:$ 29.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Collaborative Research: Minimum Sobolev Norm MethodsThe aim of this research project is to design fast and accuratenumerical algorithms for the solution of large classes of mathematicalequations that arise in engineering and science. In particular, themain concerns are the solution of integro-differential equations oncomplex domains and of signal and image processing problems. Theapproach is based on formulating the estimate of the solution of theequation at a point as the value of the smoothest solution (onaverage) at that point based on the given data. The resulting discreteequations can be shown to have specially structured matrices, whichcan be exploited to create fast solvers for these equations. Theresulting methods have two main computational advantages. First, theycan be designed to avoid gridding or triangulation of the complexdomain. Second, these methods exhibit local convergence; that is, therate at which the approximant converges to the solution at a pointdepends only on the local smoothness of the solution. These advantagesenable the method to tackle equations with complicated singularitystructures with relative ease.Let Hs denote a Sobolev Hilbert space whose elements have s 1fractional derivatives. Suppose an unknown function f in Hs satisfiesthe equation L(F) = g, where L is a linear operator and g is a knownfunction. Let Ln denote n linear functionals on Hr. Let q denote alinear functional on Hs. Then the best minmax estimate for q(f) can becomputed from the minimum Sobolev norm function p in Hs that satisfiesthe constraints Ln(L(p)) = Ln(g). This p can be computed very rapidlysince the optimal p is given by a nice set of equations that has FastMultipole Method (FMM) structure when written in the properrepresentation. Also, it is possible to work with Lp Sobolev spaceswith p = 1. In these cases the optimization problem is morecomplicated and can be reduced to linear programming problems, forwhich fast solvers are being developed that exploit the underlying FMMstructure of the constraint matrix. The theoretical work consists ofstudying the convergence of the solution as n gets bigger, and also inproving the FMM structure of the resulting discrete equations. Thealgorithmic work consists of designing fast algorithms forconstructing the FMM representation and then designing fast algorithmsfor the direct (non-iterative) solution of these equations. Theapplication work consists of applying these ideas to imagesegmentation and multi-rate signal processing. Also, mesh free,locally convergent schemes are being developed for the solution ofintegral equations and elliptic partial differential equations oncomplex domains in two dimensions.
合作研究:最小Sobolev范数方法本研究项目的目的是为工程和科学中出现的大类代数方程的求解设计快速准确的数值算法。特别是,主要关注的是复杂域上的积分微分方程和信号和图像处理问题的解决方案。该方法是基于制定的估计的解决方案的方程在一个点的值的最平滑的解决方案(平均)在该点的基础上给定的数据。由此产生的离散方程可以被证明具有特殊结构的矩阵,可以利用这些矩阵来创建这些方程的快速求解器。由此产生的方法有两个主要的计算优势。首先,它们可以被设计为避免网格化或三角化的复杂域。其次,这些方法表现出局部收敛性,也就是说,逼近收敛到解的速度只取决于解的局部光滑性。设Hs表示Sobolev Hilbert空间,其元素具有s1阶分数阶导数.设Hs中的未知函数f满足方程L(F)= g,其中L是线性算子,g是已知函数.设Ln表示Hr上的n个线性泛函,q表示Hs上的线性泛函.则q(f)的最佳minmax估计可由满足约束Ln(L(p))= Ln(g)的Hs中的最小Sobolev范数函数p给出。这个p可以非常快速地计算出来,因为最优的p是由一组很好的方程给出的,当用正确的表示法写出来时,这个方程具有快速多极方法(FMM)的结构。同样,也可以使用Lp Sobolev空间,p = 1。在这些情况下,优化问题是更复杂的,可以减少到线性规划问题,快速求解器正在开发,利用底层的FMM结构的约束矩阵。理论工作包括研究当n变大时解的收敛性,以及改进所得离散方程的FMM结构。算法工作包括设计快速算法构造FMM表示,然后设计快速算法直接(非迭代)解决这些方程。应用工作包括将这些思想应用于图像分割和多速率信号处理。此外,网格自由,局部收敛的计划正在开发的解决方案的积分方程和椭圆型偏微分方程在复杂的区域在二维。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ming Gu其他文献
Separation and purification of hydrolyzable tannin from Geranium wilfordii Maxim by reversed-phase and normal-phase highspeed counter-current chromatography
反相和正相高速逆流色谱法分离纯化老鹳草中可水解单宁
- DOI:
- 发表时间:
- 期刊:
- 影响因子:3.1
- 作者:
Zhiguo Su;Changhai Wang;Ming Gu;Dan Liu;Siliang Xing - 通讯作者:
Siliang Xing
Numerical Simulation of Wind-induced Transverse Vibration of A 2D Square Cylinder
二维方柱体风致横向振动数值模拟
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:1.3
- 作者:
Deqian Zheng;Ming Gu;Aishe Zhang;Yanjie Xie;Beibei Huang;Haochen Hu - 通讯作者:
Haochen Hu
Interfacial structure and stability in Ni/SKD/Ti/Ni skutterudite thermoelements
Ni/SKD/Ti/Ni 方钴矿热电偶的界面结构和稳定性
- DOI:
10.1016/j.surfcoat.2015.11.057 - 发表时间:
2016-01 - 期刊:
- 影响因子:0
- 作者:
Lanfang Shi;Xiangyang Huang;Ming Gu;Lidong Chen - 通讯作者:
Lidong Chen
State Value Generation with Prompt Learning and Self-Training for Low-Resource Dialogue State Tracking
通过快速学习和自我训练来生成状态值,以实现低资源对话状态跟踪
- DOI:
10.48550/arxiv.2401.16862 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ming Gu;Yan Yang;Chengcai Chen;Zhou Yu - 通讯作者:
Zhou Yu
Design of an Oil-Immersed Pulse Modulator for X-Band 50-MW Klystron
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:
- 作者:
Yongfang Liu;Hiroshi Matsumotol;Ming Gu;Guoqiang Li;Sheying Li - 通讯作者:
Sheying Li
Ming Gu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ming Gu', 18)}}的其他基金
"AF:Small:Efficient and reliable low-rank approximation techniques and fast solutions to large sparse linear equations"
“AF:Small:高效可靠的低秩逼近技术和大型稀疏线性方程的快速解”
- 批准号:
1319312 - 财政年份:2013
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
Collaborative Research: Super-fast Direct Sparse Solvers
协作研究:超快速直接稀疏求解器
- 批准号:
0515034 - 财政年份:2005
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
Fast Numerically Stable Matrix Algorithms
快速数值稳定矩阵算法
- 批准号:
0204388 - 财政年份:2002
- 资助金额:
$ 29.96万 - 项目类别:
Continuing Grant
CAREER: Algorithms for Eigenvalue and Singular Value Problems
职业:特征值和奇异值问题的算法
- 批准号:
9702866 - 财政年份:1997
- 资助金额:
$ 29.96万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Nitrous oxide reduction in oxygen minimum zones: an understudied but critical loss term in ocean greenhouse gas cycling
合作研究:最低氧气区的一氧化二氮还原:海洋温室气体循环中一个尚未充分研究但至关重要的损失项
- 批准号:
2341290 - 财政年份:2023
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Minimum Quantum Circuit Size Problems, Variants, and Applications
合作研究:FET:小型:最小量子电路尺寸问题、变体和应用
- 批准号:
2243659 - 财政年份:2022
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Minimum Quantum Circuit Size Problems, Variants, and Applications
合作研究:FET:小型:最小量子电路尺寸问题、变体和应用
- 批准号:
2224131 - 财政年份:2022
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Minimum Quantum Circuit Size Problems, Variants, and Applications
合作研究:FET:小型:最小量子电路尺寸问题、变体和应用
- 批准号:
2224132 - 财政年份:2022
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
Collaborative Research: Nitrous oxide reduction in oxygen minimum zones: an understudied but critical loss term in ocean greenhouse gas cycling
合作研究:最低氧气区中的一氧化二氮还原:海洋温室气体循环中一个尚未充分研究但至关重要的损失项
- 批准号:
2022991 - 财政年份:2021
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
Collaborative Research: Nitrous oxide reduction in oxygen minimum zones: an understudied but critical loss term in ocean greenhouse gas cycling
合作研究:最低氧气区中的一氧化二氮还原:海洋温室气体循环中一个尚未充分研究但至关重要的损失项
- 批准号:
2023430 - 财政年份:2021
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Minimum-Cost Strategies for Sequential Search and Evaluation
RI:小型:协作研究:顺序搜索和评估的最低成本策略
- 批准号:
1909446 - 财政年份:2019
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
Collaborative Research: Key Microbial Processes in Oxygen Minimum Zones: From In Situ Community Rate Measurements to Single Cells
合作研究:最低氧气区的关键微生物过程:从原位群落速率测量到单细胞
- 批准号:
1924424 - 财政年份:2019
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
Collaborative Research: Key Microbial Processes in Oxygen Minimum Zones: From In Situ Community Rate Measurements to Single Cells
合作研究:最低氧气区的关键微生物过程:从原位群落速率测量到单细胞
- 批准号:
1924492 - 财政年份:2019
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
Collaborative Research: Underexplored Connections between Nitrogen and Trace Metal Cycling in Oxygen Minimum Zones Mediated by Metalloenzyme Inventories
合作研究:金属酶库存介导的氧最低区中氮与痕量金属循环之间的联系尚未充分探索
- 批准号:
1924508 - 财政年份:2019
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant