(NECO) Collaborative Research: Reliability Modeling for Large-Scale Networking System (LSNS), and Self-Improvement in LSNS

(NECO) 合作研究:大规模网络系统 (LSNS) 的可靠性建模以及 LSNS 的自我改进

基本信息

  • 批准号:
    0831609
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

This project builds a holistic model of reliability and performance for large-scale networking system (LSNS) and develops model-based self-improvement (MBSI) technology for high reliability, high performance, and smooth network communication in LSNS. This project addresses a number of problems, including the precise formulation of a holistic model of the LSNS reliability and performance, the analytical evaluation of the reliability and performance, the scheme to reduce the jams of network traffics, and further uses the self-improvement technology to automatically glean data, build models, evaluate designs, and optimize tasks. The methods, like graph theory, Bayesian approach, maximum entropy principle, universal generating function, and Monte Carlo simulation, are mainly adopted in modeling and evaluating the LSNS, while autonomic computing technologies are implemented for the self-improvement functions. As a result, this research further advances the theory, algorithm and technology in reliability, and fills the gap of reliability modeling and self-improvement in LSNS. Expected results: (1) Novel formulations will be designed to effectively model a LSNS with all essential components; (2) An innovative HSA (Hybrid Stochastic Algorithm) will be developed to evaluate the task reliability and performance for LSNS; (3) New optimization schemes for LSNS will be designed; (4) A novel MBSI technology will be developed for self-improving the reliability, performance, and network communication; (5) Research outcomes will be applied in a variety of LSNSs, such as NASA's outer-space exploration, tele-medicines, grid computing, etc; (6) A set of software tools will be developed. (7) Research results will be disseminated through journal/conference publications and PIs' websites.
本项目建立了大规模网络系统可靠性和性能的整体模型,并开发了基于模型的自我改进(MBSI)技术,以实现大规模网络系统的高可靠性、高性能和畅通的网络通信。该项目解决了多个问题,包括准确制定LSNS可靠性和性能的整体模型,可靠性和性能的分析评估,减少网络流量拥堵的方案,以及进一步使用自我改进技术来自动收集数据、建立模型、评估设计和优化任务。主要采用图论、贝叶斯方法、最大熵原理、万能母函数、蒙特卡罗模拟等方法对LSN进行建模和评估,对自完善函数采用自主计算技术。本研究进一步完善了可靠性的理论、算法和技术,填补了LSNS在可靠性建模和自我完善方面的空白。预期结果:(1)将设计新的公式,以有效地模拟具有所有基本组件的LSN;(2)将开发创新的HSA(混合随机算法)来评估LSNS的任务可靠性和性能;(3)将设计新的LSNS优化方案;(4)将开发新的MBSI技术,以自我提高可靠性、性能和网络通信;(5)研究成果将应用于各种LSNS,如NASA的外层空间探索、远程医疗、网格计算等;(6)将开发一套软件工具。(7)研究成果将通过期刊/会议出版物和私人投资机构的网站传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuanshun Dai其他文献

Enabling Efficient and Geometric Range Query with Access Control over Encrypted Spatial Data
通过对加密空间数据的访问控制实现高效的几何范围查询
Optimal component activation in multi-attempt missions with common shock process
具有共同冲击过程的多次尝试任务中的最优组件激活
  • DOI:
    10.1016/j.ress.2024.110330
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
    11.000
  • 作者:
    Gregory Levitin;Liudong Xing;Yuanshun Dai
  • 通讯作者:
    Yuanshun Dai
Optimal scheduling, loading and aborting in additive missions performed by multiple components in shock environment
在冲击环境下由多个组件执行的加法任务中的最优调度、加载和中止
  • DOI:
    10.1016/j.ress.2024.110750
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    11.000
  • 作者:
    Gregory Levitin;Liudong Xing;Yuanshun Dai
  • 通讯作者:
    Yuanshun Dai
Optimal aborting in cumulative parallel missions with individual and common shocks
具有个体和共同冲击的累积并行任务中的最优中止
  • DOI:
    10.1016/j.ress.2025.111197
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    11.000
  • 作者:
    Gregory Levitin;Liudong Xing;Yuanshun Dai
  • 通讯作者:
    Yuanshun Dai
Enabling Efficient Multi-keyword Ranked Search over Encrypted Cloud Data through BlindStorage
通过 BlindStorage 对加密云数据实现高效的多关键字排名搜索

Yuanshun Dai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: NECO: Designing Intermittency-Aware Networked Systems
合作研究:NECO:设计间歇感知网络系统
  • 批准号:
    0832153
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: NECO: A Market-Driven Approach to Dynamic Spectrum Sharing
合作研究:NECO:市场驱动的动态频谱共享方法
  • 批准号:
    0831762
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: NeTS-NECO: Energy Replenishment for Wireless Sensor Networks
合作研究:NeTS-NECO:无线传感器网络的能量补充
  • 批准号:
    0831874
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: NECO: Designing Intermittency-Aware Networked Systems
合作研究:NECO:设计间歇感知网络系统
  • 批准号:
    0831934
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NeTS-NECO: Collaborative Research: New Approaches for Secure and Dependable Distributed Data Storage and Access Control in Mission-critical Wireless Sensor Networks
NeTS-NECO:协作研究:关键任务无线传感器网络中安全可靠的分布式数据存储和访问控制的新方法
  • 批准号:
    0831963
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
(NECO) Collaborative Research: Reliability Modeling for Large-Scale Networking System (LSNS), and Self-Improvement in LSNS
(NECO) 合作研究:大规模网络系统 (LSNS) 的可靠性建模以及 LSNS 的自我改进
  • 批准号:
    0831634
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: NECO: A Market-Driven Approach to Dynamic Spectrum Sharing
合作研究:NECO:市场驱动的动态频谱共享方法
  • 批准号:
    0831633
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
NeTS-NECO: Collaborative Research: Fixing the Reliability Problem in Network Software From its Root
NeTS-NECO:协作研究:从根本上解决网络软件的可靠性问题
  • 批准号:
    0831653
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
NeTS-NECO: Collaborative Research: New Approaches for Secure and Dependable Distributed Data Storage and Access Control in Mission-critical Wireless Sensor Networks
NeTS-NECO:协作研究:关键任务无线传感器网络中安全可靠的分布式数据存储和访问控制的新方法
  • 批准号:
    0831628
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: NECO: A Mathematical Framework for the Performance Evaluation of Large-Scale Sensor Networks
合作研究:NECO:大规模传感器网络性能评估的数学框架
  • 批准号:
    0831707
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了