Evaluation of Uncertainty in CO2 Sequestration Modeling: a Flow Relevance Study using Experimental Stratigraphy and Field Verification (Teapot Dome, Wyoming)
二氧化碳封存模型的不确定性评估:使用实验地层学和现场验证的流量相关性研究(怀俄明州茶壶圆顶)
基本信息
- 批准号:0838250
- 负责人:
- 金额:$ 26.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-15 至 2012-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Evaluation of Uncertainty in CO2 Sequestration Modeling: a Flow Relevance Study using Experimental Stratigraphy and Field Verification (Teapot Dome, Wyoming)Ye ZhangEAR-0838250University of WyomingABSTRACTInjection of supercritical carbon dioxide (CO2) into deep permeable formations of sedimentary basins has been proposed as a viable approach to greenhouse gas sequestration (geostorage). Both aquifer storage efficiency and potential leakage subsequent to injection are critical factors for consideration. Though numerical modeling provides a key assessment tool, multiple sources of uncertainty exist in the model construct, creating significant uncertainty in predicting CO2 flow in the storage formations. For example, one important conceptual model uncertainty is the multiple levels of homogeneity with which a formation can be represented, which are typically constrained by the quality and accessibility of site-specific data. For a given model, some parameters exert more influence on the prediction outcomes than others, thus in site evaluations, the value and relevance of diverse data types need to be better understood. This proposal aims to address this fundamental assessment issue with a two-pronged strategy. First, CO2 flow simulations will be conducted in a novel, experiment-based synthetic aquifer as well as in three increasingly homogenized models (i.e., facies-scale, facies-assemblage-scale, formation scale representations). To assess parameter uncertainties, the simulations will be conducted within an efficient computation framework based on the Design of Experiment. By comparing model predictions (full range of scenarios) and sensitivity (the most significant parameters impacting CO2 flow), an optimal level of model complexity will be determined. The insights gained will then help guide the development of a site-specific model for a CO2 injection test in the Teapot Dome, Wyoming. In modeling the field test, the analysis workflow will be validated in a dynamic setting by integrating simulation with data collection and field observation. Results will clarify the most relevant data types in CO2 modeling that require better characterization. Since successful implementation of carbon geostorage depends on both the accuracy and cost-effectiveness of the technical assessment studies, our work will be of broad scientific significance as well as high societal relevance.
在沉积盆地深层渗透地层中注入超临界二氧化碳(CO2)已被认为是温室气体封存(地储)的一种可行方法。含水层蓄水效率和注入后的潜在泄漏都是考虑的关键因素。尽管数值模拟提供了一个关键的评估工具,但在模型构建中存在多种不确定性来源,这在预测储层中的CO2流量时产生了很大的不确定性。例如,一个重要的概念模型的不确定性是表示地层的多重同质性,这通常受到特定地点数据的质量和可及性的限制。对于给定的模型,某些参数对预测结果的影响大于其他参数,因此在场地评价中,需要更好地了解不同数据类型的价值和相关性。本建议旨在以双管齐下的战略解决这一基本评估问题。首先,二氧化碳流动模拟将在一种新的、基于实验的合成含水层以及三种日益同质化的模型(即,相尺度、相组合尺度、地层尺度表征)中进行。为了评估参数的不确定性,模拟将在基于实验设计的高效计算框架内进行。通过比较模型预测(所有情景)和敏感性(影响二氧化碳流量的最重要参数),将确定模型复杂性的最佳水平。所获得的见解将有助于指导怀俄明州Teapot Dome二氧化碳注入测试的现场特定模型的开发。在现场测试建模中,分析工作流程将通过将模拟与数据收集和现场观测相结合,在动态环境中进行验证。结果将澄清二氧化碳建模中最相关的数据类型,这些数据类型需要更好的表征。由于碳地质储存的成功实施取决于技术评估研究的准确性和成本效益,我们的工作将具有广泛的科学意义和高度的社会相关性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ye Zhang其他文献
Elevated pervaporative desulfurization performance of Pebax®-Ag+@MOFs hybrid membranes by integrating multiple transport mechanisms
通过集成多种传输机制提高 Pebax®-Ag @MOFs 杂化膜的渗透蒸发脱硫性能
- DOI:
10.1021/acs.iecr.9b03064 - 发表时间:
2019 - 期刊:
- 影响因子:4.2
- 作者:
Ye Zhang;Zhongyi Jiang;Jing Song;Jian Song;Fusheng Pan;Peng Zhang;Xingzhong Cao - 通讯作者:
Xingzhong Cao
Aptamer-based erythrocyte-derived mimic vesicles loaded with siRNA and DOX for the targeted treatment of multidrug resistance tumors.
基于适配体的红细胞来源的模拟囊泡装载有 siRNA 和 DOX,用于多药耐药肿瘤的靶向治疗。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:9.5
- 作者:
Tengfei Wang;Yu Luo;Haiyin Lv;Jine Wang;Ye Zhang;Renjun Pei - 通讯作者:
Renjun Pei
Cut Redistribution and Insertion for Advanced 1-D Layout Design via Network Flow Optimization
通过网络流优化进行高级一维布局设计的剪切重新分配和插入
- DOI:
10.1109/tvlsi.2018.2828603 - 发表时间:
2018-09 - 期刊:
- 影响因子:2.8
- 作者:
Ye Zhang;Wenlong Lyu;Wai-Shing Luk;Fan Yang;Hai Zhou;Dian Zhou;David Pan;Xuan Zeng - 通讯作者:
Xuan Zeng
Synthesis, antiproliferative and apoptosis-inducing effects of novel asiatic acid derivatives containing a-aminophosphonates
含α-氨基膦酸酯的新型积雪草酸衍生物的合成、抗增殖和凋亡诱导作用
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:3.9
- 作者:
Ri-Zhen Huang;Cai-Yi Wang;Jian-Fei Li;Gui-Yang Yao;Ying-Ming Pan;Man-Yi Ye;Heng-Shan Wang;Ye Zhang - 通讯作者:
Ye Zhang
Evaluating Assembly Instruction Methods in Cell Production System by Physiological Parameters and Subjective Indices
通过生理参数和主观指标评价细胞生产系统中的组装指令方法
- DOI:
10.1007/978-1-84800-267-8_40 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Nuttapol Pongthanya;F. Duan;J. T. Tan;Kei Watanabe;Ye Zhang;M. Sugi;H. Yokoi;T. Arai - 通讯作者:
T. Arai
Ye Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ye Zhang', 18)}}的其他基金
Statistical Investigations in Ranking from Pairwise and Multi-wise Comparisons
成对和多重比较排名的统计调查
- 批准号:
2112988 - 财政年份:2021
- 资助金额:
$ 26.24万 - 项目类别:
Continuing Grant
Collaborative Research: A New Inverse Theory for Joint Parameter and Boundary Conditions Estimation to Improve Characterization of Deep Geologic Formations and Leakage Monitoring
合作研究:联合参数和边界条件估计的新逆理论,以改善深层地质构造和泄漏监测的表征
- 批准号:
1702078 - 财政年份:2017
- 资助金额:
$ 26.24万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
- 批准号:
2336840 - 财政年份:2024
- 资助金额:
$ 26.24万 - 项目类别:
Continuing Grant
Collaborative Research: DRMS:Group cognition, stress arousal, and environment feedbacks in decision making and adaptation under uncertainty
合作研究:DRMS:不确定性下决策和适应中的群体认知、压力唤醒和环境反馈
- 批准号:
2343727 - 财政年份:2024
- 资助金额:
$ 26.24万 - 项目类别:
Continuing Grant
UQ4FM: Uncertainty Quantification for Flood Modelling
UQ4FM:洪水建模的不确定性量化
- 批准号:
EP/Y000145/1 - 财政年份:2024
- 资助金额:
$ 26.24万 - 项目类别:
Research Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
- 批准号:
2337375 - 财政年份:2024
- 资助金额:
$ 26.24万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 26.24万 - 项目类别:
Continuing Grant
Data Complexity and Uncertainty-Resilient Deep Variational Learning
数据复杂性和不确定性弹性深度变分学习
- 批准号:
DP240102050 - 财政年份:2024
- 资助金额:
$ 26.24万 - 项目类别:
Discovery Projects
High Dimensional Approximation, Learning, and Uncertainty
高维近似、学习和不确定性
- 批准号:
DP240100769 - 财政年份:2024
- 资助金额:
$ 26.24万 - 项目类别:
Discovery Projects
TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
- 批准号:
EP/X039277/1 - 财政年份:2024
- 资助金额:
$ 26.24万 - 项目类别:
Research Grant
UQ4FM: Uncertainty Quantification for Flood Modelling
UQ4FM:洪水建模的不确定性量化
- 批准号:
EP/X041093/1 - 财政年份:2024
- 资助金额:
$ 26.24万 - 项目类别:
Research Grant
Predicting future biodiversity of ecosystem service providers in Japan using new approaches to quantify and reduce uncertainty
使用量化和减少不确定性的新方法来预测日本生态系统服务提供者的未来生物多样性
- 批准号:
24K09176 - 财政年份:2024
- 资助金额:
$ 26.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)