Exact Computation of the Voronoi Diagram of Polyhedra in Space

空间多面体Voronoi图的精确计算

基本信息

项目摘要

An important research motivation in Computational Geometry is that many geometric algorithms, for instance used in Computer Aided Design systems, are actually not robust.Often, this is caused by the use of fast but inexact floating point arithmetic. For instance, it is very hard to decide whether two objects just come very close or whether they actually touch each other. This can lead to wrong (and inconsistent) decisions within algorithms which may even lead to a full crash of the system.Computer Algebra has developed very general and exact tools that could solve such problems in principle, but a naive application of these tools is by far too slow to be used in practice. Our cardinal research interest is thus to incorporate the bestmethods from Computational Geometry, Solid Modeling and Computer Algebra in order to design and implement geometric algorithms that are exact, complete and efficient (the first two imply robustness).In this context we decided to focus our attention towards a fundamental data structure in Computational Geometry, the Voronoi Diagram. For a set of input objects the Voronoi diagram is the decomposition of the space into cells such that each Voronoi cell exactly contains all points that are closer to a particular object than to all other objects. Our ambition is to develop and implement an efficient, exact and complete algorithm that computes the Voronoi diagram of a set of polyhedral objects in three-dimensional space.To the best of our knowledge this would be the first exact and complete, and thus robust, algorithm that computes the Voronoi diagram for polyhedra in three dimensions.While the structure is important in its own right, we anticipate that the successful completion of our project will have wider impact on the feasibility of robustly implementing complex three-dimensional geometric structures,an area that is not as well developed as its two-dimensional counterpart
计算几何的一个重要研究动机是许多几何算法,例如在计算机辅助设计系统中使用的算法,实际上并不健壮,这往往是由于使用快速但不精确的浮点运算造成的。例如,很难确定两个物体是非常接近还是实际上彼此接触。这可能会导致算法中的错误(和不一致的)决定,甚至可能导致系统完全崩溃。计算机代数已经开发出非常通用和准确的工具,原则上可以解决这些问题,但这些工具的天真应用到目前为止太慢了,无法在实践中使用。因此,我们的主要研究兴趣是融合计算几何、实体建模和计算机代数的最好方法,以设计和实现精确、完整和高效的几何算法(前两者意味着健壮性)。在此背景下,我们决定将注意力集中在计算几何中的一个基本数据结构-Voronoi图上。对于一组输入对象,Voronoi图是将空间分解成单元格,使得每个Voronoi单元格准确地包含比所有其他对象更接近特定对象的所有点。我们的目标是开发和实现一个高效、准确和完整的算法来计算三维空间中一组多面体对象的Voronoi图。据我们所知,这将是第一个精确和完整的算法,从而计算三维多面体的Voronoi图。虽然结构本身很重要,但我们预计我们项目的成功完成将对稳健地实现复杂的三维几何结构的可行性产生更广泛的影响,这是一个没有二维对应结构开发得那么好的区域

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Motion Planning via Manifold Samples
  • DOI:
    10.1007/s00453-012-9736-1
  • 发表时间:
    2013-12-01
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Salzman, Oren;Hemmer, Michael;Halperin, Dan
  • 通讯作者:
    Halperin, Dan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Michael Hemmer其他文献

Dr. Michael Hemmer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于分位数g-computation的多污染物联合空气质量健康指数构建及预测效果评价
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于g-computation控制纵向数据未测混杂因素的因果推断模型构建及应用研究
  • 批准号:
    81903416
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Discovering Modular Catalysts for Selective Synthesis with Computation
通过计算发现用于选择性合成的模块化催化剂
  • 批准号:
    2400056
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
  • 批准号:
    EP/Y00244X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
  • 批准号:
    EP/Y036778/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Elastic Intermittent Computation Enabling Batteryless Edge Intelligence
职业:弹性间歇计算实现无电池边缘智能
  • 批准号:
    2339193
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
  • 批准号:
    2340137
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Probing Electrochemical Interface in CO2 reduction by Operando Computation
通过操作计算探测二氧化碳还原中的电化学界面
  • 批准号:
    DE240100846
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
  • 批准号:
    EP/Y036867/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Computation-efficient Resolution for Low-Carbon Grids with Renewables and Energy Storage
职业:可再生能源和能源存储低碳电网的计算高效解决方案
  • 批准号:
    2340095
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了