Collaborative Research: Ion Adsorption on Nanocrystalline Mineral Surfaces: Towards a Fundamental Understanding of Nanoparticles in the Environment
合作研究:纳米晶体矿物表面的离子吸附:对环境中纳米颗粒的基本了解
基本信息
- 批准号:0842555
- 负责人:
- 金额:$ 16.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-10-01 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The chemical and electrostatic interactions occurring at interfaces of crystalline metal-oxides and aqueous solutions are of fundamental importance in myriad geochemical, materials sciences and technological processes. Reactions of particular importance to geochemists that take place between minerals and fluids include, soil formation and weathering; uptake, transport and release of inorganic and organic contaminants; biomineralization; dissolution, aggregation and precipitation; and numerous other natural processes. A comparable broad list of interface reactions of relevance to the materials sciences and industry could also be presented. Intellectual Merit: The goal of this proposal is to investigate the effect of particle size on the chemical and electrostatic interactions between nanocrystalline metal-oxides and aqueous solutions. Nanosized particles are ubiquitous at the Earth?s surface, and may play a considerable role in biogeochemical and environmental processes. Furthermore engineered metal-oxide nanomaterials are used extensively in a variety of industrial applications and commercial products. The growing use of manufactured nanomaterials raises concern for the potential release of these particles into the environment. The role of nanoparticles (natural and manufactured) at the Earth?s surface is of importance because of the variation in the chemical and physical properties of these particles as a function of particle size. Equally, the large surface area of nanoparticles and variations in atomic structure possibly will change the surface reactivity of nanoparticles towards aqueous solutions as a function of particle size. No single experimental or theoretical technique will provide a coherent and comprehensive view of the properties of nanoparticle-solution interfacial reactions in the environment. Accordingly, the proposed research will integrate macroscopic experimental studies, molecular-scale computational studies, and surface complexation models. All three focus areas of this proposal will primarily investigate the interfacial behavior of anatase (TiO2) powders of discrete nanosize; additionally, the surface properties of MnO2 nanophases will be explored. The experiments will for the first time, provide a systematic, coherent and extensive experimental data set that will document fundamental differences in surface reactivity between nanoparticles and macroscopic particles of the same bulk material. The experiments will be performed over a range of temperatures (5 ? 75 °C) and solution compositions representative of those encountered at the Earth?s surface. The variable temperature studies will be the first to document the effect of temperature on nanoparticle surface reactivity. The experimental studies will be strongly coupled with theoretical studies. The molecular simulation studies will probe the atomic-scale properties of hydrated anatase nanoparticles, and will provide detailed information on surface bonding structures, H-bonding distributions, surface relaxation, and adsorption geometries. The ultimate goal of the proposed research is to merge the experimental and theoretical results into surface complexation models that can describe and predict interfacial properties that govern particle-size effects. Such an integrated approach is the state-of-the-art for interface science. Broader Impacts: The proposed studies will considerably advance fundamental understanding of the behavior of nanoparticles interacting with aqueous solutions at the Earth?s surface. Furthermore, the anticipated results will have wide-ranging application and relevance that extends well beyond the earth and environmental sciences; for instance, to materials sciences, chemistry, industry, and medical fields. For example, the controlled growth of nanoparticles and larger crystals from nanoparticles depends on aggregation, which in turn is influenced directly by particle-water interface chemistry. The students and post-doctoral associates involved in the project will receive training in both experimental and theoretical methods, learn how to integrate results from these approaches, and develop a more comprehensive understanding of nanoparticle interfaces. Moreover, the proposed studies are well suited to the involvement of both graduate and undergraduate students. All research results will be disseminated via publications in peer reviewed journals, and presented at national and international meetings.
晶体金属氧化物和水溶液的界面上发生的化学和静电相互作用在无数的地球化学、材料科学和工艺过程中具有重要的意义。对地球化学家来说,矿物和流体之间发生的特别重要的反应包括土壤形成和风化;无机和有机污染物的吸收、运输和释放;生物矿化;溶解、聚集和沉淀;以及许多其他自然过程。还可以提出与材料科学和工业相关的界面反应的可比较广泛的清单。智慧价值:这项提议的目标是研究颗粒大小对纳米金属氧化物和水溶液之间的化学和静电相互作用的影响。纳米颗粒普遍存在于地球S表面,并可能在生物地球化学和环境过程中发挥重要作用。此外,工程金属氧化物纳米材料被广泛应用于各种工业应用和商业产品中。越来越多的人造纳米材料的使用引起了人们对这些颗粒可能释放到环境中的担忧。纳米粒子(天然的和人造的)在地球表面的作用是重要的,因为这些粒子的化学和物理性质随着粒子大小的变化而变化。同样,纳米粒子的大表面积和原子结构的变化可能会改变纳米粒子对水溶液的表面反应性,这是粒子大小的函数。任何单一的实验或理论技术都不能对环境中纳米颗粒-溶液界面反应的性质提供连贯和全面的看法。因此,拟议的研究将整合宏观实验研究、分子尺度计算研究和表面络合模型。本提案的所有三个重点领域将主要研究离散纳米尺寸的锐钛矿型(TiO2)粉末的界面行为;此外,还将探索MnO2纳米相的表面性质。这些实验将首次提供一个系统的、连贯的和广泛的实验数据集,以记录相同块状材料的纳米颗粒和宏观颗粒之间表面反应性的根本差异。实验将在一系列温度(5?75°C)和溶液组成的范围内进行,这些温度和溶液组成代表了在地球上遇到的S表面的温度和组成。变温研究将首次证明温度对纳米颗粒表面反应性的影响。实验研究将与理论研究紧密结合。分子模拟研究将探索水合锐钛矿纳米颗粒的原子尺度性质,并将提供关于表面键合结构、氢键分布、表面松弛和吸附几何的详细信息。这项研究的最终目标是将实验和理论结果融合到表面络合模型中,该模型可以描述和预测支配颗粒尺寸效应的界面属性。这种综合的方法是界面科学的最新技术。更广泛的影响:拟议的研究将极大地促进对纳米粒子与地球表面水溶液相互作用行为的基本理解--S。此外,预期成果将具有广泛的应用和相关性,远远超出地球和环境科学;例如,材料科学、化学、工业和医学领域。例如,纳米颗粒和纳米颗粒中较大晶体的受控生长依赖于聚集,而聚集又直接受到颗粒-水界面化学的影响。参与该项目的学生和博士后将接受实验和理论方法方面的培训,学习如何整合这些方法的结果,并对纳米颗粒界面产生更全面的理解。此外,拟议的研究非常适合研究生和本科生的参与。所有研究成果将通过同行评议期刊上的出版物传播,并在国家和国际会议上介绍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Kubicki其他文献
James Kubicki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Kubicki', 18)}}的其他基金
CRC: Collaborative Research: Structure-Sorption Relationships In Disordered Iron-oxyhydroxides
CRC:合作研究:无序羟基氧化铁的结构-吸附关系
- 批准号:
0714173 - 财政年份:2007
- 资助金额:
$ 16.65万 - 项目类别:
Continuing Grant
Adsorption of Cations on Mineral-Aqueous Solution Interface at Elevated Temperatures
高温下矿物-水溶液界面上阳离子的吸附
- 批准号:
0073722 - 财政年份:2000
- 资助金额:
$ 16.65万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
- 批准号:
2403559 - 财政年份:2024
- 资助金额:
$ 16.65万 - 项目类别:
Standard Grant
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
- 批准号:
2325464 - 财政年份:2024
- 资助金额:
$ 16.65万 - 项目类别:
Continuing Grant
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
- 批准号:
2247396 - 财政年份:2024
- 资助金额:
$ 16.65万 - 项目类别:
Standard Grant
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
- 批准号:
2247398 - 财政年份:2024
- 资助金额:
$ 16.65万 - 项目类别:
Standard Grant
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
- 批准号:
2325463 - 财政年份:2024
- 资助金额:
$ 16.65万 - 项目类别:
Continuing Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
- 批准号:
2403560 - 财政年份:2024
- 资助金额:
$ 16.65万 - 项目类别:
Standard Grant
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
- 批准号:
2247395 - 财政年份:2024
- 资助金额:
$ 16.65万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Photophysics and Electron Transfer Reactivity of Ion Radical Excited States
CAS:合作研究:离子自由基激发态的光物理学和电子转移反应性
- 批准号:
2246509 - 财政年份:2023
- 资助金额:
$ 16.65万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: CET: The Dissolution of Li-ion Batteries and Recycling of their Precious Components.
合作研究:EAGER:CET:锂离子电池的溶解及其贵重组件的回收。
- 批准号:
2337183 - 财政年份:2023
- 资助金额:
$ 16.65万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Photophysics and Electron Transfer Reactivity of Ion Radical Excited States
CAS:合作研究:离子自由基激发态的光物理学和电子转移反应性
- 批准号:
2246508 - 财政年份:2023
- 资助金额:
$ 16.65万 - 项目类别:
Standard Grant














{{item.name}}会员




