Conformations of Biomolecules by Advanced Electron Paramagnetic Resonance Methods

通过先进的电子顺磁共振方法测定生物分子的构象

基本信息

  • 批准号:
    0843632
  • 负责人:
  • 金额:
    $ 69.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-04-01 至 2015-03-31
  • 项目状态:
    已结题

项目摘要

Intellectual merit. This project is aimed at expanding the arsenal of Electron Paramagnetic Resonance (EPR) and, especially, high resolution high field (HF) EPR methods by developing novel experimental capabilities to study fundamental roles of intermolecular interactions in self-assembly and structure-function relationships in multi component biological systems. Specific emphasis will be put on elucidating lipid-protein interactions for the Sec14 protein family. During the preceding phase of this NSF-funded project, an HF EPR-based method to separate two major components of solvent effects on spin-labeled protein residues and to detect hydrogen bond formation and local electrostatic effects was developed. While the general concepts of membrane protein folding and thermodynamic stability are beginning to emerge, the arsenal of experimental spectroscopic methods for assessing local protein electrostatics and local hydrogen bonding interactions remains severely limited. This research project aims at further developing spin-labeling HF EPR and double-resonance methods for mapping the hydrogen bonding environment for protein systems without the necessity of preparing high quality crystals. The method relies on incorporating small molecular tags, based on nitroxide radicals, into the protein structure. These labels have molecular volume and structure similar to the native protein side chain and, therefore, are known to cause only minimal perturbation to the tertiary structure. The main advantage of such labels lies in the sensitivity of their EPR spectra to the local electrostatic environment and hydrogen bond formation resulting in essential biophysical data that are difficult to obtain otherwise. The sensitivity of nitroxide spin labels to local electrostatics and hydrogen bonding is further enhanced by high field and double-resonance EPR methods under development. These methods will be further refined during this project to elucidate an intriguing and largely unknown molecular mechanism by which the Sec14 protein and its analogs regulate the interface between phospholipid metabolism and membrane trafficking. Spin label EPR and a complementary array of biophysical methods will be used to study how Sec14 recognizes, binds and transports phopholipids and how it interacts with phospholipid membranes.Broader impact. The methods developed in the course of this project will fill the gap in the existing experimental capabilities of EPR and enable detailed biophysical studies of local electrostatics and hydrogen bonding that are directly involved in structure-function relationships of many biological systems of contemporary interest - from model membranes and peptides to ion channels, transporters and G-protein coupled receptors. The project will integrate research and teaching by adding research-driven experimental tasks to a largely lecture course "Physical Methods in Biological Chemistry" developed by the PI. In the course of this project graduate and undergraduate students will be trained across several disciplines including biophysical spectroscopy, chemical synthesis and methods of molecular biology. The project will expand research opportunities for undergraduate students, especially, minority students through the Alliances for Graduate Education and the Professoriate (AGEP) and Research Experience for Undergraduates (REU) programs. In an effort to reach out to undergraduate colleges in rural North Carolina, the PI will continue collaboration with the University of North Carolina-Pembroke. The PI and her group will be engaged in science projects and demonstrations in the Centennial Middle School associated with NCSU that will be coordinated through the Science House, a North Carolina institution for K-12 outreach program.
智力上的优点。 该项目旨在扩大电子顺磁共振(EPR),特别是高分辨率高场(HF)EPR方法的武库,通过开发新的实验能力来研究多组分生物系统中自组装和结构-功能关系中分子间相互作用的基本作用。 具体重点将放在阐明Sec 14蛋白质家族的脂质-蛋白质相互作用。在这个NSF资助的项目的前一阶段,开发了一种基于HF EPR的方法来分离溶剂对自旋标记蛋白质残基的影响的两个主要成分,并检测氢键形成和局部静电效应。 虽然膜蛋白质折叠和热力学稳定性的一般概念开始出现,实验光谱方法评估局部蛋白质静电和局部氢键相互作用的武器库仍然非常有限。 该研究项目旨在进一步开发自旋标记HF EPR和双共振方法,用于在不需要制备高质量晶体的情况下绘制蛋白质系统的氢键环境。 该方法依赖于将基于氮氧自由基的小分子标记掺入蛋白质结构中。 这些标记物具有与天然蛋白质侧链相似的分子体积和结构,因此已知仅对三级结构造成最小的扰动。 这种标签的主要优点在于它们的EPR光谱对局部静电环境和氢键形成的敏感性,从而导致难以以其他方式获得的基本生物物理数据。 氮氧自旋标签的灵敏度,以当地的静电和氢键进一步提高高场和双共振EPR方法正在开发中。 这些方法将在本项目中进一步完善,以阐明Sec 14蛋白及其类似物调节磷脂代谢和膜运输之间界面的有趣且基本未知的分子机制。自旋标记EPR和一系列互补的生物物理方法将用于研究Sec 14如何识别、结合和转运磷脂,以及它如何与磷脂膜相互作用。本项目过程中开发的方法将填补EPR现有实验能力的差距,并使局部静电和氢键的详细生物物理研究成为可能,这些研究直接涉及当代感兴趣的许多生物系统的结构-功能关系-从模型膜和肽到离子通道、转运蛋白和G蛋白偶联受体。 该项目将通过在PI开发的主要讲座课程“生物化学中的物理方法”中添加研究驱动的实验任务来整合研究和教学。在这个项目的过程中,研究生和本科生将接受多个学科的培训,包括生物物理光谱学,化学合成和分子生物学方法。 该项目将通过研究生教育和教授联盟(AGEP)和本科生研究经验(REU)计划为本科生,特别是少数民族学生扩大研究机会。 为了接触到北卡罗来纳州农村的本科院校,PI将继续与北卡罗来纳大学彭布罗克分校合作。 PI和她的团队将在与NCSU相关的百年中学从事科学项目和演示,这些项目和演示将通过科学之家进行协调,科学之家是北卡罗来纳州的K-12外展计划机构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tatyana Smirnova其他文献

Spectroscopic Probes of the Reactive Intermediates of Dehaloperoxidase from <em>Amphitrite ornata</em>
  • DOI:
    10.1016/j.bpj.2008.12.2240
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Reza A. Ghiladi;Rania Dumarieh;Matthew Thompson;Zao Wang;Tatyana Smirnova;Stefan Franzen
  • 通讯作者:
    Stefan Franzen
Twardówka jako tkanka docelowa w postępującej krótkowzroczności
Twardówka jako tkanka docelowa w postępującej krótkowzroczności
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elena N. Iomdina;Elena Tarutta;Gajane Markossian;J. Aksenova;Tatyana Smirnova;Alexej Bedretdinov;Moscow Helmholtz;Vladimir Vladimirovich Neroev
  • 通讯作者:
    Vladimir Vladimirovich Neroev

Tatyana Smirnova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tatyana Smirnova', 18)}}的其他基金

Spin-labeling Electron Paramagnetic Resonance Methods for Measurements at Nanoscale Interfaces
用于纳米级界面测量的自旋标记电子顺磁共振方法
  • 批准号:
    2305172
  • 财政年份:
    2023
  • 资助金额:
    $ 69.99万
  • 项目类别:
    Standard Grant
Electrostatics and dielectric properties of bio-nano interface by spin-labeling EPR
自旋标记 EPR 生物纳米界面的静电和介电特性
  • 批准号:
    1508607
  • 财政年份:
    2015
  • 资助金额:
    $ 69.99万
  • 项目类别:
    Continuing Grant
Conformations of Biomolecules by Advanced Electron Paramagnetic Resonance Methods
通过先进的电子顺磁共振方法测定生物分子的构象
  • 批准号:
    0451510
  • 财政年份:
    2005
  • 资助金额:
    $ 69.99万
  • 项目类别:
    Continuing Grant
POWRE: Molecular Mechanisms of Binding of Gd(3+) Complexes to Biomolecules
POWRE:Gd(3) 配合物与生物分子结合的分子机制
  • 批准号:
    0196326
  • 财政年份:
    2001
  • 资助金额:
    $ 69.99万
  • 项目类别:
    Standard Grant
POWRE: Molecular Mechanisms of Binding of Gd(3+) Complexes to Biomolecules
POWRE:Gd(3) 配合物与生物分子结合的分子机制
  • 批准号:
    0075042
  • 财政年份:
    2000
  • 资助金额:
    $ 69.99万
  • 项目类别:
    Standard Grant

相似海外基金

Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 69.99万
  • 项目类别:
    Collaborative R&D
Preclinical validation of synthetic biomolecules to treat Breast Cancer from AI-enabled discovery of novel lncRNA therapeutic targets.
通过人工智能发现新型 lncRNA 治疗靶点,对合成生物分子治疗乳腺癌进行临床前验证。
  • 批准号:
    10110204
  • 财政年份:
    2024
  • 资助金额:
    $ 69.99万
  • 项目类别:
    Launchpad
A Semi-Automated Antibody-Discovery Platform to Target Challenging Biomolecules
针对具有挑战性的生物分子的半自动化抗体发现平台
  • 批准号:
    MR/Y003616/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.99万
  • 项目类别:
    Fellowship
I-Corps: Using Peptides for Biomolecules Encapsulation, Storage, and Preservation
I-Corps:使用肽进行生物分子封装、储存和保存
  • 批准号:
    2414552
  • 财政年份:
    2024
  • 资助金额:
    $ 69.99万
  • 项目类别:
    Standard Grant
On-chip bio-opto-mechanics: Controlling phonon-assisted processes in single biomolecules
片上生物光力学:控制单个生物分子中的声子辅助过程
  • 批准号:
    EP/V049011/2
  • 财政年份:
    2023
  • 资助金额:
    $ 69.99万
  • 项目类别:
    Research Grant
Development of organic chemistry targeting biomolecules in live animals
针对活体动物生物分子的有机化学的发展
  • 批准号:
    23H05405
  • 财政年份:
    2023
  • 资助金额:
    $ 69.99万
  • 项目类别:
    Grant-in-Aid for Specially Promoted Research
CAREER: Tunable Graphene Microdevices for Multiplexed Detection of Biomolecules Beyond Diffusion Limit
职业:可调谐石墨烯微器件,用于超越扩散极限的生物分子的多重检测
  • 批准号:
    2236997
  • 财政年份:
    2023
  • 资助金额:
    $ 69.99万
  • 项目类别:
    Continuing Grant
EAGER: Establishing Near-Ultraviolet Coherent Anti-Stokes Raman Scattering Microscopy for Highly Sensitive Imaging of Native Biomolecules
EAGER:建立近紫外相干反斯托克斯拉曼散射显微镜,对天然生物分子进行高灵敏成像
  • 批准号:
    2332594
  • 财政年份:
    2023
  • 资助金额:
    $ 69.99万
  • 项目类别:
    Standard Grant
Improving the stability of biomolecules using ionic liquids
使用离子液体提高生物分子的稳定性
  • 批准号:
    DP230101712
  • 财政年份:
    2023
  • 资助金额:
    $ 69.99万
  • 项目类别:
    Discovery Projects
Modular Synthesis of Optically Active Biomolecules Utilizing Iterative Mitsunobu Reactions
利用迭代 Mitsunobu 反应模块化合成光学活性生物分子
  • 批准号:
    23K06062
  • 财政年份:
    2023
  • 资助金额:
    $ 69.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了