CAREER: Holistic 3D Brain Image Parsing by Integrating Implicit and Explicit Models
职业:通过集成隐式和显式模型进行整体 3D 大脑图像解析
基本信息
- 批准号:0844566
- 负责人:
- 金额:$ 46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Designing automated algorithms to extract and analyze anatomical brain structures from neuro-images is of significant scientific and clinical importance in detecting abnormal brain patterns, analyzing various brain diseases, and studying the brain growth.This project will develop a general statistical modeling/computing framework to perform 3D holistic brain image understanding. The framework emphasizes rigorous, efficient, and effective learning-based statistical models to integrate the complex appearances, varying 3D shapes, and the large spatial configuration of anatomical brain structures.Implicit models through discriminative approaches have the advantages of fusing a large amount of information and obtaining decisions quickly. Explicit models through generative approaches can directly represent the information and thus, better explain the structure and model the transformation and scale change. The PI explores harmonic relationships between discriminative and generative models for 3D image parsing by combining implicit and explicit models along several directions: (1) learning-based models with rich appearance, and implicit shape and context; (2) integrating skeleton with surfaces for 3D shapes; (3) effective 3D shape representation and similarity measure; (4) component-based simultaneous registration and segmentation.This research will contribute to automating the process of extracting a large number of anatomical structures, and enhancing the shape analysis needed for detecting brain diseases, monitoring health conditions, studying drug effects, and discovering brain functions. The scope of the proposed model goes beyond medical image analysis and can be applied in other problems of statistical modeling/computing, computer vision, multi-variate labeling in machine learning.
设计自动化算法从神经图像中提取和分析大脑解剖结构,对于检测异常大脑模式、分析各种大脑疾病和研究大脑发育具有重要的科学和临床意义。本项目将开发一个通用的统计建模/计算框架,以实现3D整体大脑图像理解。 该框架强调严格、高效、有效的基于学习的统计模型,以整合复杂的外观、多变的3D形状和解剖大脑结构的大空间配置,通过判别方法的隐式模型具有融合大量信息和快速获得决策的优点。通过生成方法的显式模型可以直接表示信息,从而更好地解释结构并模拟转换和尺度变化。PI通过将隐式和显式模型沿着几个方向相结合来探索3D图像解析的判别模型和生成模型之间的和谐关系:(1)具有丰富外观的基于学习的模型,以及隐式形状和上下文;(2)将3D形状的骨架与表面集成;(3)有效的3D形状表示和相似性度量;(4)基于组件的同步配准和分割。该研究将有助于自动提取大量解剖结构的过程,并增强检测脑部疾病,监测健康状况,研究药物作用所需的形状分析,和发现大脑功能。所提出的模型的范围超出了医学图像分析,可以应用于统计建模/计算,计算机视觉,机器学习中的多变量标记等问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhuowen Tu其他文献
Uni-3D: A Universal Model for Panoptic 3D Scene Reconstruction
Uni-3D:全景 3D 场景重建的通用模型
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Xiang Zhang;Zeyuan Chen;Fangyin Wei;Zhuowen Tu - 通讯作者:
Zhuowen Tu
Robust point matching via vector field consensus.
通过矢量场一致性进行稳健的点匹配
- DOI:
10.1109/tip.2014.2307478 - 发表时间:
2014-04 - 期刊:
- 影响因子:0
- 作者:
Jiayi Ma;Ji Zhao;Jinwen Tian;Yuille AL;Zhuowen Tu - 通讯作者:
Zhuowen Tu
Systeme et methode d'analyse et de detection de structure anatomique
结构解剖分析与检测系统与方法
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Zhuowen Tu;X. Zhou;Dorin Comaniciu;Christiane Schultz - 通讯作者:
Christiane Schultz
Zhuowen Tu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhuowen Tu', 18)}}的其他基金
RI: Small: Panoptic 3D Parsing in the Wild
RI:小型:野外全景 3D 解析
- 批准号:
2127544 - 财政年份:2021
- 资助金额:
$ 46万 - 项目类别:
Continuing Grant
RI:Small: Unsupervised Discriminatively-Generative Learning:
RI:小:无监督的判别生成学习:
- 批准号:
1717431 - 财政年份:2017
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
RI: Small: Unraveling and Building Top-Down Generators in Deep Convolutional Neural Networks
RI:小型:在深度卷积神经网络中解开和构建自上而下的生成器
- 批准号:
1618477 - 财政年份:2016
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
RI: Small: Unsupervised Object Class Discovery via Bottom-up Multiple Class Learning
RI:小:通过自下而上的多类学习进行无监督对象类发现
- 批准号:
1360566 - 财政年份:2013
- 资助金额:
$ 46万 - 项目类别:
Continuing Grant
CAREER: Holistic 3D Brain Image Parsing by Integrating Implicit and Explicit Models
职业:通过集成隐式和显式模型进行整体 3D 大脑图像解析
- 批准号:
1360568 - 财政年份:2013
- 资助金额:
$ 46万 - 项目类别:
Continuing Grant
RI: Small: Unsupervised Object Class Discovery via Bottom-up Multiple Class Learning
RI:小:通过自下而上的多类学习进行无监督对象类发现
- 批准号:
1216528 - 财政年份:2012
- 资助金额:
$ 46万 - 项目类别:
Continuing Grant
相似海外基金
A macrophage-centric holistic view of postnatal development
以巨噬细胞为中心的产后发育整体观
- 批准号:
DP240102888 - 财政年份:2024
- 资助金额:
$ 46万 - 项目类别:
Discovery Projects
A HOLISTIC APPROACH OF ELECTRIC MOTOR COOLING (E-COOL)
电机冷却的整体方法 (E-COOL)
- 批准号:
10099099 - 财政年份:2024
- 资助金额:
$ 46万 - 项目类别:
EU-Funded
A HOLISTIC APPROACH OF ELECTRIC MOTOR COOLING (E-COOL)
电机冷却的整体方法 (E-COOL)
- 批准号:
10102030 - 财政年份:2024
- 资助金额:
$ 46万 - 项目类别:
EU-Funded
Developing STEM Identity Through Holistic Student Support and Engagement
通过全面的学生支持和参与来发展 STEM 认同
- 批准号:
2325702 - 财政年份:2024
- 资助金额:
$ 46万 - 项目类别:
Continuing Grant
A Holistic Approach to Improve Learning and Motivation in Introductory Programming with Automated Grading, Web-based Team Support, and Game Development
通过自动评分、基于网络的团队支持和游戏开发提高入门编程学习和动机的整体方法
- 批准号:
2345097 - 财政年份:2024
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
SYBERAC Towards a SYstems-Based, holistic Environmental Risk Assessment of Chemicals
SYBERAC 迈向基于系统的全面化学品环境风险评估
- 批准号:
10109292 - 财政年份:2024
- 资助金额:
$ 46万 - 项目类别:
EU-Funded
HARMONY: Holistic Approach to enhance the Recyclability of rare-earth permanent Magnets Obtained from aNY waste stream
HARMONY:提高从废物流中获得的稀土永磁体可回收性的整体方法
- 批准号:
10094315 - 财政年份:2024
- 资助金额:
$ 46万 - 项目类别:
EU-Funded
CAREER: Holistic Distributed Resource Management and Discovery via Augmented Learning and Robust Optimization
职业:通过增强学习和鲁棒优化进行整体分布式资源管理和发现
- 批准号:
2339243 - 财政年份:2024
- 资助金额:
$ 46万 - 项目类别:
Continuing Grant
REFINE - From solar energy to fuel: A holistic artificial photosynthesis platform for the production of viable solar fuels
REFINE - 从太阳能到燃料:用于生产可行太阳能燃料的整体人工光合作用平台
- 批准号:
10106958 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
EU-Funded
Collaborative Research: IRES Track I: US-Costa Rica Collaboration to Quantify the Holistic Benefits of Resource Recovery in Small-Scale Communities
合作研究:IRES 第一轨:美国-哥斯达黎加合作量化小规模社区资源回收的整体效益
- 批准号:
2246349 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Standard Grant