CAREER: Nanoscale Magnetic Phenomena and Coercivity Mechanism in Layered Magnets with Extremely Large Anisotropy
职业:具有极大各向异性的层状磁体中的纳米级磁现象和矫顽力机制
基本信息
- 批准号:0844807
- 负责人:
- 金额:$ 52.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-03-01 至 2015-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
****NON-TECHNICAL ABSTRACT****This Faculty Early Career Award funds a project integrating research and education to explore and understand nanometer scale magnetic phenomena in complex materials, such as layered uniaxial magnets. State-of-the-art low temperature magnetic imaging techniques will be used. Nanoscale magnetic imaging provides irreplaceable visual information of novel magnetic materials, which is crucial for scientific understanding and technological application. New materials with enhanced/emergent properties are critical for the advances of modern technology, such as ultra-high density magnetic recording devices, magnetoelectronics and high-efficiency motors and generators. Training of future material scientists is naturally integrated with the proposed research activities. Undergraduate and high school students will be involved in the proposed research via various summer programs at Rutgers. The education component of this proposal will explore a novel feedback mechanism developed at Rutgers to enhance effective teaching of physics to non-science majors. Future and current high school teachers will be exposed to contemporary material research activities proposed in this project via the Teacher Education Program at Rutgers University so that modern material science and technology can reach out to high school education.****TECHNICAL ABSTRACT****The goal of this CAREER project is to explore and understand novel nanoscale magnetic phenomena in complex materials, such as layered uniaxial magnets. Low temperature nanoscale magnetic imaging techniques, including both magnetic force microscopy and spin polarized-scanning tunneling microscopy/spectroscopy will be used to investigate magnetic domain structure, domain irreversibility and atomic scale domain walls. The research is expected to establish a microscopic understanding of magnetic hysteresis phenomena in layered materials with a large uniaxial anisotropy. Nanoscale magnetic imaging provides irreplaceable real space information of novel magnetic materials, which is crucial for scientific understanding and technological applications of nanoscale magnetism. New materials with enhanced/emergent properties are critical for the advances of modern technology. Training of future material scientists is naturally integrated to the proposed research activities. Undergraduate and high school students will be involved in the proposed research via various existing summer programs at Rutgers. The education component of this proposal will explore a novel feedback mechanism developed at Rutgers to enhance effective teaching of physics to non-science majors. Future and current high school teachers will be exposed to contemporary material research activities via the Teacher Education Program at Rutgers University so that modern material science and technology can reach out to high school education.
****非技术摘要****该教师早期职业奖资助一个集研究和教育于一体的项目,旨在探索和理解复杂材料(例如层状单轴磁体)中的纳米级磁性现象。 将使用最先进的低温磁成像技术。纳米级磁成像为新型磁性材料提供了不可替代的视觉信息,这对于科学理解和技术应用至关重要。具有增强/新兴性能的新材料对于现代技术的进步至关重要,例如超高密度磁记录设备、磁电子学以及高效电机和发电机。对未来材料科学家的培训自然与拟议的研究活动相结合。本科生和高中生将通过罗格斯大学的各种暑期项目参与拟议的研究。该提案的教育部分将探索罗格斯大学开发的一种新颖的反馈机制,以提高非科学专业的物理教学效果。未来和现任高中教师将通过罗格斯大学的教师教育计划接触到该项目提出的当代材料研究活动,以便现代材料科学和技术能够延伸到高中教育。****技术摘要****该职业项目的目标是探索和理解复杂材料(例如层状单轴磁体)中的新颖纳米级磁性现象。 低温纳米级磁成像技术,包括磁力显微镜和自旋偏振扫描隧道显微镜/光谱学,将用于研究磁畴结构、磁畴不可逆性和原子尺度磁畴壁。 该研究有望建立对具有大单轴各向异性的层状材料中磁滞现象的微观理解。 纳米磁成像提供了新型磁性材料不可替代的真实空间信息,对于纳米磁性的科学认识和技术应用至关重要。具有增强/新兴特性的新材料对于现代技术的进步至关重要。对未来材料科学家的培训自然会融入到拟议的研究活动中。本科生和高中生将通过罗格斯大学现有的各种暑期项目参与拟议的研究。该提案的教育部分将探索罗格斯大学开发的一种新颖的反馈机制,以提高非科学专业的物理教学效果。未来和现任的高中教师将通过罗格斯大学的教师教育计划接触当代材料研究活动,以便现代材料科学和技术能够深入到高中教育。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weida Wu其他文献
77Se NMR probe of magnetic excitations of the magic angle effect in (TMTSF)2PF6.
(TMTSF)2PF6 中魔角效应的磁激发的 77Se NMR 探针。
- DOI:
10.1103/physrevlett.94.097004 - 发表时间:
2005 - 期刊:
- 影响因子:8.6
- 作者:
Weida Wu;Paul Chaikin;W. Kang;J. Shinagawa;W. Yu;S. Brown - 通讯作者:
S. Brown
Robust silicon extraction method and cycling of arsenic in rice paddy soil
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Weida Wu - 通讯作者:
Weida Wu
High-throughput single-cell density measurements enable dynamic profiling of immune cell and drug response from patient samples
高通量单细胞密度测量能够对来自患者样本的免疫细胞和药物反应进行动态分析。
- DOI:
10.1038/s41551-025-01408-6 - 发表时间:
2025-05-20 - 期刊:
- 影响因子:26.600
- 作者:
Weida Wu;Sarah H. Ishamuddin;Thomas W. Quinn;Smitha Yerrum;Ye Zhang;Lydie L. Debaize;Pei-Lun Kao;Sarah Marie Duquette;Mark A. Murakami;Morvarid Mohseni;Kin-Hoe Chow;Teemu P. Miettinen;Keith L. Ligon;Scott R. Manalis - 通讯作者:
Scott R. Manalis
Giant angular-dependent Nernst effect in the quasi-one-dimensional organic conductor (TMTSF)2PF6
准一维有机导体 (TMTSF)2PF6 中巨大的角度相关能斯特效应
- DOI:
10.1103/physrevb.72.235116 - 发表时间:
2005 - 期刊:
- 影响因子:3.7
- 作者:
Weida Wu;N. Ong;P. Chaikin - 通讯作者:
P. Chaikin
Challenges in identifying chiral spin textures via the topological Hall effect
通过拓扑霍尔效应识别手性自旋织构的挑战
- DOI:
10.1038/s43246-022-00238-2 - 发表时间:
2022-04-08 - 期刊:
- 影响因子:9.600
- 作者:
Graham Kimbell;Changyoung Kim;Weida Wu;Mario Cuoco;Jason W. A. Robinson - 通讯作者:
Jason W. A. Robinson
Weida Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weida Wu', 18)}}的其他基金
Visualizing nanoscale phenomena in layered chalcogenides with heavy elements
可视化重元素层状硫属化物中的纳米级现象
- 批准号:
1506618 - 财政年份:2015
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
EFRI 2-DARE: Engineering novel topological interface states in 2D chalcogenide heterostructures
EFRI 2-DARE:在二维硫族化物异质结构中设计新颖的拓扑界面态
- 批准号:
1542798 - 财政年份:2015
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
相似海外基金
Quantum microscopy facility for ultrasensitive nanoscale magnetic imaging
用于超灵敏纳米级磁成像的量子显微镜设备
- 批准号:
LE240100092 - 财政年份:2024
- 资助金额:
$ 52.5万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Regulation mechanism of intra-nuclear reactions studied by nanoscale magnetic resonance
纳米磁共振研究核内反应调控机制
- 批准号:
23H00370 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
ERI: Nanoscale Photo-Magnetic Energy Transfer Modulation to Restore the Homeostatic Functioning of the Damaged Endothelium
ERI:纳米级光磁能量转移调节以恢复受损内皮的稳态功能
- 批准号:
2301688 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
I-Corps: A Hybrid Photo-Magnetic Field Generator for Assessment of Nanoscale Materials and Therapeutic Molecules
I-Corps:用于评估纳米级材料和治疗分子的混合光磁场发生器
- 批准号:
2040086 - 财政年份:2021
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
High-Resolution Nanoscale Magnetic Resonance Spectroscopy of Solid State Systems
固态系统的高分辨率纳米级磁共振波谱
- 批准号:
RGPIN-2017-03848 - 财政年份:2021
- 资助金额:
$ 52.5万 - 项目类别:
Discovery Grants Program - Individual
A platform for probing nanoscale magnetic states under multiple actuations
多种驱动下探测纳米级磁态的平台
- 批准号:
LE210100086 - 财政年份:2021
- 资助金额:
$ 52.5万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
High-Resolution Nanoscale Magnetic Resonance Spectroscopy of Solid State Systems
固态系统的高分辨率纳米级磁共振波谱
- 批准号:
RGPIN-2017-03848 - 财政年份:2020
- 资助金额:
$ 52.5万 - 项目类别:
Discovery Grants Program - Individual
High-Resolution Nanoscale Magnetic Resonance Spectroscopy of Solid State Systems
固态系统的高分辨率纳米级磁共振波谱
- 批准号:
RGPIN-2017-03848 - 财政年份:2019
- 资助金额:
$ 52.5万 - 项目类别:
Discovery Grants Program - Individual
Quantum Technologies for Nuclear Magnetic Resonance at the Nanoscale
纳米级核磁共振量子技术
- 批准号:
414061038 - 财政年份:2019
- 资助金额:
$ 52.5万 - 项目类别:
Reinhart Koselleck Projects
High-Resolution Nanoscale Magnetic Resonance Spectroscopy of Solid State Systems
固态系统的高分辨率纳米级磁共振波谱
- 批准号:
RGPIN-2017-03848 - 财政年份:2018
- 资助金额:
$ 52.5万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




