CAREER: Leveraging Online Behavior to Support Knowledge and Memory

职业:利用在线行为支持知识和记忆

基本信息

  • 批准号:
    0845351
  • 负责人:
  • 金额:
    $ 49.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-02-01 至 2015-01-31
  • 项目状态:
    已结题

项目摘要

This research will examine two related issues: (1) how to motivate people to contribute more to communities such as open source software and Wikipedia that produce public goods, and (2) how to strengthen people's self-concepts and relationships with others by using content they create online to support reminiscence. This work deeply intertwines computing and social science, using insight about people's motivation, goals, and behavior to drive models, algorithms, and interfaces that leverage people's online activity to create value for individuals and society. The online nature of this activity allows it to be aggregated into large data sets for modeling (e.g., social network analysis) and mining (e.g., collaborative filtering); a major theme of the research is to effectively wring more value out of the activities people already do.Understanding why people act online will lead to process models that explain important features of the data people generate through their actions as well as new algorithms for exploiting that data. For example, the research will model how critical events and roles people adopt affect people's contributions over time in Wikipedia. Such models models will drive algorithms that expose people to other people, groups, tools, policies, and group norms in contexts the models suggest will increase people's motivation to contribute.Understanding users' goals will also lead to new applications for data and more effective interfaces for presenting it. The research will study how and why people reminisce through a series of lightweight prototypes that cue memories, as well as through analysis of online behavior in social media. This work will lead to algorithms that capture memory-laden content from activity in social media and interfaces that effectively use that content to support reminiscence. Preliminary work suggests that spontaneous, mobile delivery of appropriately chosen reminders promises to increase the value people derive from the content they create.More broadly, the process of designing these models, algorithms, and interfaces will lead to insights about using social science theory in design that can be captured and shared with practitioners, new methodologies for analyzing complex social data, and the production of useful behavioral datasets that will benefit other researchers. Increasing participation in public goods like Wikipedia will improve the individual experience of members and the social goods they create. Tools developed in the domain of reminiscing have the potential to improve many people's lives, especially as the population ages. The education plan provides for richer research experiences through conference attendance and summer exchange programs with other labs. It also helps students develop the interdisciplinary attitudes and skills needed for this work through courses that look at real systems and the data they provide from both technological and social perspectives.
本研究将探讨两个相关问题:(1)如何激励人们为开源软件和维基百科等提供公共产品的社区做出更多贡献,以及(2)如何通过使用他们在网上创建的内容来支持回忆,从而加强人们的自我概念和与他人的关系。 这项工作将计算和社会科学紧密结合在一起,利用对人们动机、目标和行为的洞察来驱动模型、算法和界面,从而利用人们的在线活动为个人和社会创造价值。此活动的在线性质允许将其聚合为大型数据集以进行建模(例如,社交网络分析)和挖掘(例如,协同过滤);这项研究的一个主要主题是有效地从人们已经在做的活动中榨取更多的价值。2了解人们为什么在网上行动将导致建立过程模型,解释人们通过行动产生的数据的重要特征,以及利用这些数据的新算法。例如,这项研究将模拟人们所采用的关键事件和角色如何随着时间的推移影响人们在维基百科上的贡献。此类模型模型将驱动算法,在模型建议的背景下将人们暴露给其他人、群体、工具、政策和群体规范,这将增加人们做出贡献的动力。了解用户的目标还将带来新的数据应用程序和更有效的界面来呈现它。研究将研究人们如何以及为什么通过一系列提示记忆的轻量级原型来回忆,以及通过分析社交媒体中的在线行为。这项工作将导致算法从社交媒体的活动中捕获记忆内容,并有效地使用这些内容来支持回忆。初步工作表明,自发的,移动的交付适当选择的提醒有望增加人们从他们创造的内容中获得的价值。更广泛地说,设计这些模型,算法和界面的过程将导致关于在设计中使用社会科学理论的见解,这些理论可以被捕获并与从业者分享,分析复杂社会数据的新方法,以及产生有用的行为数据集,这将使其他研究人员受益。增加对维基百科等公共产品的参与将改善会员的个人体验和他们创造的社会产品。在回忆领域开发的工具有可能改善许多人的生活,特别是随着人口老龄化。 该教育计划通过参加会议和与其他实验室的夏季交流计划提供更丰富的研究经验。它还帮助学生发展跨学科的态度和技能,通过课程,着眼于真实的系统和他们从技术和社会的角度提供的数据,这项工作所需的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Cosley其他文献

Daniel Cosley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Cosley', 18)}}的其他基金

WORKSHOP: ACM Group 2014 Conference Doctoral Research Consortium
研讨会:ACM Group 2014 年会议博士研究联盟
  • 批准号:
    1414780
  • 财政年份:
    2013
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
  • 批准号:
    2338346
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Continuing Grant
CSR: Small: Leveraging Physical Side-Channels for Good
CSR:小:利用物理侧通道做好事
  • 批准号:
    2312089
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
HSI Implementation and Evaluation Project: Leveraging Social Psychology Interventions to Promote First Year STEM Persistence
HSI 实施和评估项目:利用社会心理学干预措施促进第一年 STEM 的坚持
  • 批准号:
    2345273
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Nonlocal Elastic Metamaterials: Leveraging Intentional Nonlocality to Design Programmable Structures
非局域弹性超材料:利用有意的非局域性来设计可编程结构
  • 批准号:
    2330957
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
  • 批准号:
    EP/Y00244X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Research Grant
Building recovery and resilience in severe mental illness: Leveraging the role of social determinants in illness trajectories and interventions
建立严重精神疾病的康复和复原力:利用社会决定因素在疾病轨迹和干预措施中的作用
  • 批准号:
    MR/Z503514/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Research Grant
CAREER: Leveraging Data Science & Policy to Promote Sustainable Development Via Resource Recovery
职业:利用数据科学
  • 批准号:
    2339025
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Continuing Grant
CAREER: Constraining the high-latitude ocean carbon cycle: Leveraging the Ocean Observatories Initiative (OOI) Global Arrays as marine biogeochemical time series
职业:限制高纬度海洋碳循环:利用海洋观测计划(OOI)全球阵列作为海洋生物地球化学时间序列
  • 批准号:
    2338450
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了