CAREER: Enabling Community-Scale Modeling of Human Behavior and its Application to Healthcare

职业:实现社区规模的人类行为建模及其在医疗保健中的应用

基本信息

  • 批准号:
    0845683
  • 负责人:
  • 金额:
    $ 50.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-03-01 至 2011-11-30
  • 项目状态:
    已结题

项目摘要

Research supported by this award is developing community-based methods for sensing, recognizing, and interpreting human activities from body-worn sensors. Specifically, this research is1) developing systems that learn new classes of activity with minimal human supervision, where the system queries a human user for additional information on an activity being learned, but only when such queries are informationally necessary and behaviorally unobtrusive,2) developing the paradigm of community-guided learning, which leverages people's social ties and behavioral similarities, in order to define an efficient scheme for sharing various aspects of the underlying activity classes across many individuals, and3) evaluating the new community-guided learning methods by using them to learn about (a) social isolation and functional independence among elderly persons, and (b) social interaction among high-functioning autistic children.Speaking generally, the research is advancing machine learning and artificial intelligence, especially in the areas of semi-supervised, active, and relational learning. Beyond these basic scientific contributions, the resulting research has the potential to transform community health assessment by collecting fine-grained clinically-relevant information continuously, cheaply, and unobtrusively, over long periods of time. This research also opens up many opportunities for education and outreach, in part because it is pushing machine learning and artificial intelligence into social and societally-important realms, promising to attract groups, notably women, who are under-represented in computer science.
该奖项支持的研究正在开发基于社区的方法,从穿戴在身上的传感器感知、识别和解释人类活动。具体地说,这项研究是:1)开发在最少人工监督下学习新的活动类别的系统,其中该系统向人类用户询问关于正在学习的活动的附加信息,但仅当这样的询问在信息上是必要的并且在行为上不引人注目时;2)开发社区引导学习的范例,其利用人们的社会关系和行为相似性,以便定义在许多个人之间共享基础活动类别的各个方面的有效方案;以及3)通过使用新的社区引导学习方法来评估新的社区引导学习方法,以了解(A)老年人之间的社会隔离和功能独立,和(B)高功能自闭症儿童之间的社会互动。总的来说,这项研究正在推动机器学习和人工智能,特别是在半监督、主动和关系学习领域。除了这些基本的科学贡献外,由此产生的研究还有可能通过在较长时间内连续、廉价和不引人注目地收集细粒度的临床相关信息来改变社区健康评估。这项研究还为教育和推广提供了许多机会,部分原因是它正在推动机器学习和人工智能进入社会和社会重要领域,有望吸引群体,尤其是在计算机科学中代表性不足的女性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tanzeem Choudhury其他文献

Human dynamics: computation for organizations: Human dynamics: computation for organizations
人类动力学:组织计算: 人类动力学:组织计算
  • DOI:
    10.1016/j.patrec.2004.08.012
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Pentland;Tanzeem Choudhury;N. Eagle;Push Singh
  • 通讯作者:
    Push Singh
Predicting adherence to psychotherapy from smartphones using deep learning
  • DOI:
    10.1016/j.jagp.2022.12.186
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Samprit Banerjee;Hongzhe Zhang;Tanzeem Choudhury;Dimitris Kiosses;Jo Anne Sirey;George Alexopoulos
  • 通讯作者:
    George Alexopoulos
Creating Social Network Models from Sensor Data
从传感器数据创建社交网络模型
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Danny Wyatt;Tanzeem Choudhury;J. Bilmes
  • 通讯作者:
    J. Bilmes
Characterizing Social Networks using the Sociometer
使用 Sociometer 表征社交网络
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tanzeem Choudhury;A. Pentland
  • 通讯作者:
    A. Pentland
Discovering Long Range Properties of Social Networks with Multi-Valued Time-Inhomogeneous Models
使用多值时间非均匀模型发现社交网络的长期属性

Tanzeem Choudhury的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tanzeem Choudhury', 18)}}的其他基金

Collaborative Research: HCC: MEDIUM: Body as Intervention: Toward Closed-Loop, Embodied Behavioral Health Interventions
合作研究:HCC:中:身体作为干预措施:走向闭环、具体的行为健康干预措施
  • 批准号:
    2212351
  • 财政年份:
    2022
  • 资助金额:
    $ 50.75万
  • 项目类别:
    Standard Grant
RAPID: Using Smartphones to detect and monitor respiratory symptoms in COVID-19 patients
RAPID:使用智能手机检测和监测 COVID-19 患者的呼吸道症状
  • 批准号:
    2031977
  • 财政年份:
    2020
  • 资助金额:
    $ 50.75万
  • 项目类别:
    Standard Grant
FW-HTF: Collaborative Research: An Embodied Intelligent Cognitive Assistant to Enhance Cognitive Performance of Shift Workers
FW-HTF:协作研究:增强轮班工人认知表现的具体智能认知助手
  • 批准号:
    1840025
  • 财政年份:
    2018
  • 资助金额:
    $ 50.75万
  • 项目类别:
    Standard Grant
CAREER: Enabling Community-Scale Modeling of Human Behavior and its Application to Healthcare
职业:实现社区规模的人类行为建模及其在医疗保健中的应用
  • 批准号:
    1202141
  • 财政年份:
    2011
  • 资助金额:
    $ 50.75万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420846
  • 财政年份:
    2024
  • 资助金额:
    $ 50.75万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420847
  • 财政年份:
    2024
  • 资助金额:
    $ 50.75万
  • 项目类别:
    Standard Grant
Academics4Rail: Building a Community of Railway Scientific Researchers and Academia for ERJU and Enabling a Network of PhDs (Academia Teaming with Industry)
Academys4Rail:为二院建立铁路科研人员和学术界社区并启用博士网络(学术界与工业界合作)
  • 批准号:
    10102850
  • 财政年份:
    2023
  • 资助金额:
    $ 50.75万
  • 项目类别:
    EU-Funded
Academics4Rail: Building a community of railway scientific researchers and academia for ERJU and enabling a network of PhDs (academia teaming with industry)
Academys4Rail:为ERJU建立铁路科研人员和学术界社区并建立博士网络(学术界与工业界合作)
  • 批准号:
    10087488
  • 财政年份:
    2023
  • 资助金额:
    $ 50.75万
  • 项目类别:
    EU-Funded
Enabling and learning from the community-led housing sector
支持社区主导的住房部门并向其学习
  • 批准号:
    ES/Y008138/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50.75万
  • 项目类别:
    Fellowship
Global Centers Track 2: Enabling interdisciplinary wildfire research for community resilience
全球中心轨道 2:促进跨学科野火研究以增强社区复原力
  • 批准号:
    2330343
  • 财政年份:
    2023
  • 资助金额:
    $ 50.75万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Facility: Magnetics Information Consortium Catalyzes Enhanced Cyberinfrastructure and FAIR Data Access Enabling Science Across Community Subdomains
合作提案:设施:磁学信息联盟促进增强的网络基础设施和公平数据访问,实现跨社区子域的科学
  • 批准号:
    2148616
  • 财政年份:
    2022
  • 资助金额:
    $ 50.75万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: Facility: Magnetics Information Consortium Catalyzes Enhanced Cyberinfrastructure and FAIR Data Access Enabling Science Across Community Subdomains
合作提案:设施:磁学信息联盟促进增强的网络基础设施和公平数据访问,实现跨社区子域的科学
  • 批准号:
    2148549
  • 财政年份:
    2022
  • 资助金额:
    $ 50.75万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: Facility: Magnetics Information Consortium Catalyzes Enhanced Cyberinfrastructure and FAIR Data Access Enabling Science Across Community Subdomains
合作提案:设施:磁学信息联盟促进增强的网络基础设施和公平数据访问,实现跨社区子域的科学
  • 批准号:
    2148719
  • 财政年份:
    2022
  • 资助金额:
    $ 50.75万
  • 项目类别:
    Continuing Grant
EPSRC Network+: Neurotechnology for enabling community-based diagnosis and care
EPSRC 网络:用于实现基于社区的诊断和护理的神经技术
  • 批准号:
    EP/W035030/1
  • 财政年份:
    2022
  • 资助金额:
    $ 50.75万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了