CAREER: Modeling Complexity in Plankton Communities
职业:浮游生物群落复杂性建模
基本信息
- 批准号:0845825
- 负责人:
- 金额:$ 83.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).Ecosystems are incredibly complex because they include many species interacting with each other in a spatially and temporally varying environment. One tool ecologists use to cope with this complexity is mathematical modeling. Despite the fact that mathematics is the natural language to describe complex systems, most biologists typically receive little mathematical training. The two goals of this project are to enhance the mathematical training of the next generation of ecologists and to advance our theoretical understanding of communities of plankton, the microscopic plants and animals at the base of most aquatic food webs. The main educational component of the project is the continuation of a successful three-week summer program in mathematical ecology at the Kellogg Biological Station (KBS). This program serves undergraduate and graduate students from across and outside the US. The PI will also host visiting Research Fellows to his lab for short-term research projects and improve a graduate course in theoretical ecology at MSU. Together, this educational program will reach 48 students in the summer program and 12 research fellows, and will improve the training of graduate students at MSU. The research component of this project uses mathematical models to investigate how vertical spatial structure and seasonal variability determine the structure and dynamics of lake and ocean plankton communities. Due to their small size, rapid growth, and relative simplicity, plankton are an ideal model system for community ecology. They are also important globally, playing key roles in coupled biogeochemical cycles, and locally, as drivers of water quality. The work on plankton will extend the researchers? previous theoretical work to include more complex food webs, diverse behavioral and physiological strategies, and the interaction of spatial and temporal forcing. Together, this research will advance our understanding of the structure and dynamics of plankton communities.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。生态系统是非常复杂的,因为它们包括许多物种在空间和时间变化的环境中相互作用。 生态学家用来科普这种复杂性的工具之一是数学建模。 尽管数学是描述复杂系统的自然语言,但大多数生物学家通常很少接受数学训练。 该项目的两个目标是加强下一代生态学家的数学培训,并推进我们对浮游生物群落的理论理解,这些浮游生物是大多数水生食物网的基础。 该项目的主要教育组成部分是在凯洛格生物站(KBS)成功的为期三周的数学生态学夏季课程的延续。 该计划为来自美国各地和国外的本科生和研究生提供服务。 PI还将接待访问研究员到他的实验室进行短期研究项目,并改进MSU理论生态学的研究生课程。 总之,这个教育计划将达到48名学生在夏季计划和12名研究员,并将提高研究生在密歇根州立大学的培训。 该项目的研究部分使用数学模型来调查垂直空间结构和季节变化如何决定湖泊和海洋浮游生物群落的结构和动态。由于其体积小,生长迅速,相对简单,浮游生物是一个理想的模式系统群落生态学。 它们在全球范围内也很重要,在耦合的地球化学循环中发挥着关键作用,在地方上也是水质的驱动因素。 对浮游生物的研究将扩展研究人员?以前的理论工作,包括更复杂的食物网,不同的行为和生理策略,以及空间和时间强迫的相互作用。 总之,这项研究将促进我们对浮游生物群落结构和动态的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Klausmeier其他文献
Christopher Klausmeier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Klausmeier', 18)}}的其他基金
QEIB: Novel Approaches to Plankton Seasonal Succession
QEIB:浮游生物季节性演替的新方法
- 批准号:
0445298 - 财政年份:2005
- 资助金额:
$ 83.57万 - 项目类别:
Continuing Grant
QEIB: Novel Approaches to Plankton Seasonal Succession
QEIB:浮游生物季节性演替的新方法
- 批准号:
0610532 - 财政年份:2005
- 资助金额:
$ 83.57万 - 项目类别:
Continuing Grant
International Research Fellow Award: Theoretical approaches to understanding the structure of ecological communities
国际研究员奖:理解生态群落结构的理论方法
- 批准号:
0076200 - 财政年份:2000
- 资助金额:
$ 83.57万 - 项目类别:
Fellowship Award
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Linking terrestrial and marine carbon cycling across the Paleocene-Eocene Thermal Maximum via intermediate complexity Earth system modeling
通过中等复杂度的地球系统建模将古新世-始新世热最大值期间的陆地和海洋碳循环联系起来
- 批准号:
2202694 - 财政年份:2022
- 资助金额:
$ 83.57万 - 项目类别:
Standard Grant
Modeling geospatial processes: Integrating artificial intelligence with complexity, networks and geographic information sciences
地理空间过程建模:将人工智能与复杂性、网络和地理信息科学相结合
- 批准号:
RGPIN-2017-03939 - 财政年份:2022
- 资助金额:
$ 83.57万 - 项目类别:
Discovery Grants Program - Individual
Modeling geospatial processes: Integrating artificial intelligence with complexity, networks and geographic information sciences
地理空间过程建模:将人工智能与复杂性、网络和地理信息科学相结合
- 批准号:
RGPIN-2017-03939 - 财政年份:2021
- 资助金额:
$ 83.57万 - 项目类别:
Discovery Grants Program - Individual
CIF: Small: Low Complexity Massive MIMO Systems: Synergistic use of Array Geometry, Modeling and Learning
CIF:小型:低复杂性大规模 MIMO 系统:阵列几何、建模和学习的协同使用
- 批准号:
2124929 - 财政年份:2021
- 资助金额:
$ 83.57万 - 项目类别:
Standard Grant
Modeling geospatial processes: Integrating artificial intelligence with complexity, networks and geographic information sciences
地理空间过程建模:将人工智能与复杂性、网络和地理信息科学相结合
- 批准号:
RGPIN-2017-03939 - 财政年份:2020
- 资助金额:
$ 83.57万 - 项目类别:
Discovery Grants Program - Individual
Modeling geospatial processes: Integrating artificial intelligence with complexity, networks and geographic information sciences
地理空间过程建模:将人工智能与复杂性、网络和地理信息科学相结合
- 批准号:
RGPIN-2017-03939 - 财政年份:2019
- 资助金额:
$ 83.57万 - 项目类别:
Discovery Grants Program - Individual
Empirical data analysis and modeling of the emergence of supply network complexity with a specific focus on firms' strategies of diversification and exploration/exploitation
对供应网络复杂性的出现进行实证数据分析和建模,特别关注企业的多元化和探索/利用战略
- 批准号:
19K04893 - 财政年份:2019
- 资助金额:
$ 83.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modeling geospatial processes: Integrating artificial intelligence with complexity, networks and geographic information sciences
地理空间过程建模:将人工智能与复杂性、网络和地理信息科学相结合
- 批准号:
RGPIN-2017-03939 - 财政年份:2018
- 资助金额:
$ 83.57万 - 项目类别:
Discovery Grants Program - Individual
Modeling geospatial processes: Integrating artificial intelligence with complexity, networks and geographic information sciences
地理空间过程建模:将人工智能与复杂性、网络和地理信息科学相结合
- 批准号:
RGPIN-2017-03939 - 财政年份:2017
- 资助金额:
$ 83.57万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Understanding the Origins of Hazardous Convective Weather Environments through Reduced-complexity Climate Modeling Experiments
合作研究:通过降低复杂性的气候模拟实验了解危险对流天气环境的起源
- 批准号:
1648629 - 财政年份:2017
- 资助金额:
$ 83.57万 - 项目类别:
Standard Grant